Performance of Self-Triggered Control Approaches

  • Carlos Rosero Universidad Técnica del Norte
  • Cristina Vaca Universidad Técnica del Norte
  • Luz Tobar Subía Universidad Técnica del Norte
  • Fredy Rosero Universidad Técnica del Norte
Keywords: real-time computing, sampling rules, optimal control, event-driven control, linear quadratic regulator


The self-triggered control produces non-periodic sampling sequences that vary depending on design factors related to stability and performance of the controlled system. Within this framework, two approaches aimed at minimizing a quadratic cost have been developed recently, considering an optimal performance and pursuing the same control objective; each approach follows a different sampling rule. One approach is based on maintaining the current control value as long as possible, while an optimal performance threshold is not passed. The other approach is based on the generation of a piecewise control signal, which approximates a continuous optimal control signal subject to certain constraints. This article presents a comparative study between the two approaches, providing a useful insight for conducting future research. Control performance and resource utilization were considered as metrics of interest and to evaluate them, the average sampling interval and the standardized cost were taken into account. It was shown that the different search space of each approach poses a challenge to design an equitable framework of comparison, and that both approaches exceed the periodic sampling.


Download data is not yet available.


Arzén, K. (1999). A Simple Event-Based PID Controller. IFAC World Conference, 18, pp. 423-428. Recuperado de
Astrom, K., & Bernhardsson, B. (1999). Comparison of periodic and event based sampling for first-order stochastic systems. 14th IFAC World Congress. Recuperado de
Astrom, K., & Wittenmark, B. (1997). Computer-Controlled System. Theory and Design. Third edition. Prentice Hall.
Bini, E., and Buttazzo, G. (2014). The optimal sampling pattern for linear control systems. IEEE Transactions on Automatic Control, 59(1), pp. 78-90, doi:
Gommans, T. (2015). Resource-aware control and estimation: an optimization-based approach. Eindhoven University of Technology Library. Recuperado de
Gommans, T., Antunes, D., Donkers, T., Tabuada, P., and Heemels, M. (2014). Self-triggered linear quadratic control. Automatica, 50(4), pp. 1279-1287,
Heemels, W., Johansson, K., & Tabuada, P. (2012). An introduction to event-triggered and self-triggered control. IEEE 51st Annual Conference on Decision and Control (CDC), pp. 3270-3285, doi:
Meng, X., and Chen, T. (2012). Optimal sampling and performance comparison of periodic and event based impulse control. IEEE Transactions on Automatic Control, 57(12), pp. 3252-3259. doi:
Molin, A., and Hirche, S. (2013). On the optimality of certainty equivalence for event-triggered control systems. IEEE Transactions on Automatic Control, 58(2), pp. 470-474. doi:
Murray, R.M. (2006). Control and Dynamical Systems: LQR Control. California Institute of Technology. Recuperado de
Rabi, M., Johansson, K., & Johansson, M. (2008). Optimal stopping for event-triggered sensing and actuation. 47th IEEE Conference on Decision and Control, pp. 3607-3612. doi:
Velasco, M., Fuertes, J., & Martí, P. (2003). The self triggered task model for real-time control systems. IEEE 24th Real-Time Systems Symposium, pp. 67-70. Recuperado de
Velasco, M., Martí, P., and Bini, E. (2009). Equilibrium sampling interval sequences for event-driven controllers. 2009 European Control Conference, pp. 3773-3778. Recuperado de
Velasco, M., Martí, P., and Bini, E. (2015). Optimal-sampling-inspired self triggered control. 1st IEEE International Conference on Event-based Control, Communication, and Signal Processing, pp. 1-8, doi:
Velasco, M., Martí, P., Yépez, J., Ruiz, F., Fuertes, J., and Bini, E. (2011). Qualitative analysis of a one-step finite-horizon boundary for event-driven controllers. 50th IEEE Conference on Decision and Control and European Control Conference, pp. 1662-1667. doi:
How to Cite
Rosero, C., Vaca, C., Tobar Subía, L., & Rosero, F. (2017). Performance of Self-Triggered Control Approaches. Enfoque UTE, 8(2), pp. 107 - 120.
General Engineering