Analysis by the finite element method of the behavior of the ABS brake pads with materials based on steel and zinc discretizing the continuous element using CAE software

  • Nelson Gutierrez Universidad Tecnológica Equinoccial
  • Alexy Fabian Vinueza Lozada Universidad Tecnológica Equinoccial
Keywords: mesh, computational simulation, wear, heat flux, convergence

Abstract

In this paper, the study of the behavior of the brake pads of an ABS system was carried out using the finite element analysis method. This method is based on the transformation of a body of continuous nature into an approximate discrete model, this transformation is known as the discretization of the model. For this reason, one of the most critical actions is to perform quality meshing, so that this allows improving the convergence of results by optimizing the computational load, which enables the problem to be solved in less time. The use of software tools to carry out this type of study has the advantage that in the post-processing the type of parameters that can be studied can be chosen, in this case, mechanical and thermal variables that allowed to characterize the behavior of the materials were analyzed. The study was carried out for two materials: Trimat MN1081 which is composed of steel and non-ferrous filaments and Trimat GZC composed of zinc fibers, in this way important characteristics of these materials were obtained, such as stress, deformation, penetration, the flow heat and energy. Based on the method developed and the results obtained, a study will be conducted with alternative materials, which will allow determining the feasibility of using these materials in search of optimal results in both mechanical characteristics and costs.

Downloads

Download data is not yet available.

References

ANSYS. (2012). Ansys advantage-magazine. Recuperado el 16 de agosto de 2017, de http://www.ansys.com/-/media/Ansys/corporate/resourcelibrary/article/AA-V6-I2-Full-Version.pdf
ANSYS. (2017). Ansys advantage-magazine. Recuperado el 16 de agosto de 2017, de http://www.ansys.com/-/media/Ansys/corporate/resourcelibrary/article/AA-V6-I2-Full-Version.pdf
Benito Muñoz J. J., Álvarez Cabal R., Ureña Prieto F., Salete Casino E., Aranda Ortega E. (2014). Introducción al Método de los Elementos Finitos. Madrid: UNED.
Brown, T., Rothbart, H. (2006). Mechanical Design Handbook. New York: McGraw Hill professional.
Budynas, R., Keith, N. (2011). Diseño de Ingeniería mecánica de Shigley. México: McGraw Hill.
Chand, S., Khurmi, R., Gupta, J. (2005). Machine Desing. New delhi: 14.
Cornejo C. (2010). Sistemas dinámicos con fricción expresado en ecuaciones hamiltonianas controladas por puerto. Ciudad de México: Tesis Doctoral Universidad Nacional Autónoma de México.
Díaz, A. (2000). Métodos de mallado y algoritmos adaptativos en dos y tres dimensiones para la resolución de problemas electromagnéticos cerrados mediante el método de los elementos finitos. Valencia: Publicaciones de la Universidad de Valencia.
Falasca, G. (2016). Manual técnico pastillas freno. Academia. Recuperado el 16 de agosto de 2017, de http://www.academia.edu/7457719/Manual_tecnico_pastillas_freno
Feng Liu, Xiankuan Qi and Mingqing Sun. (2008). Automation Structural Analysis Based. Informatics and Management Science V, 208, 776. ISSN 1876-1100.
Forsberg, K., Mooz, H., Cotterman, H. (2005). Visualizing Project Management (Modelo en V). Nueva York, NY: John Wiley and Sons.
García A., Castillo F. (2007). CIM: El computador en la automatización de la producción. Castilla: Ediciones de la Universidad de Castilla. ISBN: 10 84-8427-444-6.
ISO21994. (2007). Passenger cars - Stopping distance at straigth-line braking with ABS. Switzerland: ISO.
ISO6310. (2009). Road vehicles - Brake linings - compressive strain test methods. Switzerland: ISO 2009.
Maher Bouazizi; Tarek Lazghab; Mohamed Soula. (2013). FEA of In-Plane Shear Stresses of a Preloaded Sandwich Plate with a Viscoelastic Core: Application to the Disk Brake System. Design and Modeling, 652. ISSN 2195-4356
Moaveni, S. (2008). Finite Element Analysis Theory and application with ANSYS. EE.UU: Pretice Hall.
Naula I., Albuja, G.; Carrillo, R; Izurieta, C. (2016). Modelación y simulación numérica de la Ecuacion de Richards para problemas de infiltración (Vol. 7). Ecuador. Revista Enfoque UTE. 46-58.
Norton, R. (2010). Diseño de maquinaria. México: Mc Graw Hill.
Robert, H. (2002). The mechatronics handbook. Texas: CRS Press.
TRIMAT MN1081. (2012). Trimat friction solutions. Recuperado el 21 de Agosto de 2017 de http://www.trimat.co.uk/pdf/spec-mn1081.pdf
TRIMAT GZC. (2012). Trimat friction solutions. Recuperado el 21 de agosto de 2017 de http://www.trimat.co.uk/pdf/spec-gzc.pdf
Venegas, W. (2012). Análisis por el método de elementos finitos de un disco de freno con sistema mordaza. Trabajos de Investigación. Unidad de posgrados, 173. ISBN: 978-9942-14-000.5
Vinueza A., Gutierrez N. (2017). Análisis por el método de elementos finitos del comportamiento de las pastillas de freno de un sistema ABS discretizando el elemento continuo utilizando software CAE. INCISCOS 2017 (Próximo a publicarse). Quito, Ecuador.
ZhengXin Zhang; FangLin Huang. (2013). Dynamics Analysis of the MRF. Proceedings of the 2nd International Conference on Green and Networks 2012 (GCN 2012), 226, 744. Chongqing, China. ISSN 1876-1119.
Published
2018-03-30
How to Cite
Gutierrez, N., & Vinueza Lozada, A. (2018). Analysis by the finite element method of the behavior of the ABS brake pads with materials based on steel and zinc discretizing the continuous element using CAE software. Enfoque UTE, 9(1), pp. 188 - 203. https://doi.org/https://doi.org/10.29019/enfoqueute.v9n1.259
Section
Automation and Control, Mechatronics, Electromechanics, Automotive