Aerodynamic design of 100 KW blades for horizontal axis wind turbines located on the “Cerro Villonaco” zone

Authors

  • Alexy Fabián Vinueza Lozada Independent
  • Jorge Andrés Narváez Hidalgo Independent

DOI:

https://doi.org/10.29019/enfoqueute.v9n3.330

Keywords:

aerodynamic, simulation; rotor; wind turbine; parque eólico.

Abstract

In this paper, the design and aerodynamic simulation of a rotor for horizontal axis wind turbine for the Cerro Villonaco was carried out. The aerodynamic design aimed for a blade with an optimal geometry, which is defined by the chord and the twist angle of the airfoil. The design parameters conferred to the project were given by the characteristics of the wind in the Villonaco Wind Farm. Results were validated with an aerodynamic simulation, developed in a software employing the mathematical model known as blade element momentum theory, to verify its optimum performance against the requirements established with a TSR, with the goal to set a design method for subsequent investigations. Finally, a rotor analysis was carried out, obtaining an output mechanical power of 107 KW, thus corroborating the design power with the characteristics of the Villonaco Wind Farm.

Metrics

Downloads

Download data is not yet available.

References

Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook (2da ed.). Reino Unido: John Wiley & Sons.
Castán Fernández, C. (2012). Diseño aerodinámico optimizado de un aerogenerador de eje horizontal (Tesis maestría). Universidad de Oviedo, Gijón, España.
Goldwind. (2018, Mayo 11). Goldwind-Brochure-1.5-Web.pdf. Recuperado de: goldwindamericas.com: http://www.goldwindamericas.com/sites/default/files/Goldwind-Brochure-1.5-Web.pdf
Jamieson, P. (2011). Innovation in wind turbine design (1ra ed). Reino Unido: John Wiley & Sons.
Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2010). Wind Energy
Explained: Theory, Design an Application (2da ed.). Reino Unido: John Wiley & Sons
Ollague Armijos, H. G., & Crespo Azanza, H. E. (2014). Estudio y evaluación de los parámetros de operación del proyecto eólico Villonaco de la provincia de Loja-Ecuador (Tesis pregrado). Universidad Politécnica Salesiana, Cuenca, Ecuador.
Peña, L. A. (2017). Evaluación de la producción energética de la central eólica Villonaco utilizando modelos numéricos computacionales (tesis maestría).
Regulación No ARCONEL 004/15. (2015). Requerimientos Técnicos para la conexión y operación de generadores renovables no convencionales a las redes de transmisión y distribución.
Segura, J. R. C., Lopez, G. E. G., & Torres, E. M. G. (2016). Modeling, Limits and Baseline of Voltage Interharmonics Generation in Andean Wind Farms. IEEE Latin America Transactions, 14(3), 1271-1278.
Song, F., Ni, Y., & Huang, N. (2011). Small wind turbine blade design and finite element analysis. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering (ICEICE), p. 5331-5334, Wuhan, China.
Verein Deutsher Ingenieure. (2004). Design methodology for mechatronics systems. Düsserldorf.
Wind Turbine Airfoil Families. (2014). Recuperado de NREL: https://wind.nrel.gov/airfoils/AirfoilFamilies.html

Published

2018-09-28

How to Cite

Vinueza Lozada, A. F., & Narváez Hidalgo, J. A. (2018). Aerodynamic design of 100 KW blades for horizontal axis wind turbines located on the “Cerro Villonaco” zone. Enfoque UTE, 9(3), pp. 106 - 115. https://doi.org/10.29019/enfoqueute.v9n3.330

Issue

Section

Automation and Control, Mechatronics, Electromechanics, Automotive