Characterization of the tensile properties of an Epoxy-Carbon laminated composite used in the development of a single-seater Formula SAE type

Authors

  • Jorge Fajardo Universidad Politécnica Salesiana
  • Micaela Villa Universidad Politécnica Salesiana
  • Jonatan Pozo Universidad Politécnica Salesiana
  • Diego Urgilés Universidad Politécnica Salesiana

DOI:

https://doi.org/10.29019/enfoque.v10n3.381

Keywords:

carbon fiber, pre-preg, composite, anisotropy, formula SAE

Abstract

This article presents the analysis of the tensile properties of a carbon fiber reinforced polymer composite used in the manufacture of the single-seater for Formula SAE competition. Composites were manufactured from pre-pregs with different fiber orientations by a vacuum curing process. The effect of the fiber orientation on the strength and rigidity of the formulated composites was evaluated. The tensile specimens were instrumented with biaxial extensometers in order to obtain a real record of the deformation and subsequent determination of the Young's modulus. The experimental results were compared with the analytical results obtained from the Classical Laminate Theory using specialized software. A microscopic analysis of the fractured region of the specimens was also developed to evaluate the effect of the manufacturing process. The set of information generated from the experimental and analytical results provides an understanding of the anisotropy of Epoxy-Carbon fiber composites that will allow design decisions to be made in future developments within the Formula SAE project.

Metrics

Downloads

Download data is not yet available.

References

Albarracín Parra, P., y Castillo Agurto, E. (2014). Determinación de la distribución de orientación y longitud de fibras mediante procesamiento digital de imágenes en compuestos poliméricos reforzados con fibras cortas. Tesis de grado, Universidad Politécnica Salesiana.
Al-Mosawi, A. I. (2014). Theoretical Evaluation to Tensile Strength of Composite Material by Using Ansys Program. Engineering Sciences, 4 (22).
Aveiga, D., y Ribeiro, M. L. (2018). A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Mathematical Problems in Engineering. https://doi.org/10.1155/2018/1861268
Bailey, J. E., Curtis, P. T., y Parvizi, A. (1979). On the transverse cracking and longitudinal splitting behaviour of glass and carbon fibre reinforced epoxy cross ply laminates and the effect of Poisson and thermally generated strain. Proc. R. Soc. Lond. A, 366 (1727): 599-623. https://doi.org/10.1098/rspa.1979.0071
Beaumont, P. W. R., Soutis, C., y Hodzic, A. (eds.). (2017). The Structural Integrity of Carbon Fiber Composites: Fifty Years of Progress and Achievement of the Science, Development, and Applications. Suiza: Springer International Publishing.
Çeçen, V., Sarikanat, M., Yildiz, H., y Tavman, I. H. (2008). Comparison of mechanical properties of epoxy composites reinforced with stitched glass and carbon fabrics: Characterization of mechanical anisotropy in composites and investigation on the interaction between fiber and epoxy matrix. Polymer Composites, 29 (8): 840-853. https://doi.org/10.1002/pc.20458
Chermoshentseva, A. S., Pokrovskiy, A. M., y Bokhoeva, L. A. (2016). The Behavior of Delaminations in Composite Materials-Experimental Results. IOP Conference Series: Materials Science and Engineering, 116. https://doi.org/10.1088/1757-899X/116/1/012005
Dresden, T. U. D. U. (s. f.). eLamX. Recuperado de https://tu-dresden.de/ing/maschinenwesen/ilr/lft/elamx2/startseite/?set_language=en
Elkington, M., Bloom, D., Ward, C., Chatzimichali, A., y Potter, K. (2015). Hand layup: Understanding the manual process. Advanced Manufacturing: Polymer & Composites Science, 1 (3), 138-151. https://doi.org/10.1080/20550340.2015.1114801
Espinoza, E., y Hidalgo, J. (2016). Caracterización de materiales compuestos para la aplicación en la carrocería del vehículo monoplaza tipo Formula SAE (Master’s Thesis).
Fajardo, J., Valarezo, L., López, L., y Sarmiento, A. (2013). Experiencies in obtaining polymeric composites reinforced with natural fiber from Ecuador. Ingenius. Revista de Ciencia y Tecnología 9: 27-35.
Krishnamoorthy, K., y Sasikumar, T. (2016). Analysis and Characterization of Tensile Property of the Composite Specimen using ANSYS, 11 (1): 380-384.
Liu, J. D., Yang, X. F., Xu, Z. L., Li, Y. S., Yan, G. H., y Huang, L. K. (2017). Experimental Study on the Tool Wear in Milling Carbon Fiber Reinforced Plastics. Materials Science Forum, 893, 57-61. https://doi.org/10.4028/www.scientific.net/MSF.893.57
López, L., Sarmiento, A., Fajardo, J., Valarezo, L., y Zuluaga, R. (s. f.). Determinación del porcentaje de humedad, solubles e insolubles en agua de la fibra de Carludovica Palmata (paja toquilla).
Ma, Y., Ueda, M., Yokozeki, T., Sugahara, T., Yang, Y., y Hamada, H. (2017). A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Composite Structures, 160 (Supplement C), 89-99. https://doi.org/10.1016/j.compstruct.2016.10.037
Ma, Y., Yang, Y., Sugahara, T., y Hamada, H. (2016). A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Composites Part B: Engineering, 99: 162–172. https://doi.org/10.1016/j.compositesb.2016.06.005
Majerski, K., Surowska, B., y Bieniaś, J. (2012). Tensile properties of carbon fiber/epoxy laminates at low and room temperatures. Composites Theory and Practice, R. 12 (3): 182–185.
Mallick, P. K. (2007). Fiber-Reinforced Composites: Materials, Manufacturing, and Design, Third Edition. CRC Press.
McIlhagger, A., Archer, E., y McIlhagger, R. (2015). 3 - Manufacturing processes for composite materials and components for aerospace applications. En P. E. Irving y C. Soutis (eds.), Polymer Composites in the Aerospace Industry (53-75). https://doi.org/10.1016/B978-0-85709-523-7.00003-7
Mehta, M. G., y Vadher, J. A. (2017). A study on Different Failures of Composite Materials. International Journal of Advance Engineering and Research Development, 4 (9), 302-307.
Murugan, R., Ramesh, R., y Padmanabhan, K. (2014). Investigation on Static and Dynamic Mechanical Properties of Epoxy Based Woven Fabric Glass/Carbon Hybrid Composite Laminates. Procedia Engineering, 97: 459-468. https://doi.org/10.1016/j.proeng.2014.12.270
Noroña, M., y Gómez, M. (2019). Desarrollo e innovación de los sistemas mecatrónicos en un automóvil: Una revisión. Enfoque UTE, 10 (1): 117-127. https://doi.org/10.29019/enfoqueute.v10n1.350
Paiva, J. M. F. de, Mayer, S., & Rezende, M. C. (2006). Comparison of tensile strength of different carbon fabric reinforced epoxy composites. Materials Research, 9 (1): 83-90. https://doi.org/10.1590/S1516-14392006000100016
Paltán, C. (2016). Validación del sistema de inyección de un biomaterial compuesto PP-GAK mediante modelamiento CAD-CAE. Universidad Politécnica Salesiana.
Paredes, J., Pérez, C., y Castro, C. (2017). Análisis de las propiedades mecánicas del compuesto de matriz poliéster reforzado con fibra de vidrio 375 y cabuya aplicado a la industria automotriz. Enfoque UTE, 8 (3), 1-15. https://doi.org/10.29019/enfoqueute.v8n3.163
Ramana, M. V., y Ramprasad, S. (2017). Experimental Investigation on Jute/Carbon Fibre reinforced Epoxy based Hybrid Composites. Materials Today: Proceedings, 4 (8): 8654-8664. https://doi.org/10.1016/j.matpr.2017.07.214
Schulenberg, L., Seelig, T., Andrieux, F., y Sun, D.-Z. (2017). An anisotropic elasto-plastic material model for injection-molded long fiber-reinforced thermoplastics accounting for local fiber orientation distributions. Journal of Composite Materials, 51 (14): 2061-2078. https://doi.org/10.1177/0021998316668983
Viscardi, M., Arena, M., Barra, G., y Guadagno, L. (2016). Structural performance analysis of smart carbon fiber samples supported by experimental investigation. International Journal of Mechanics, 10, 376-382.
Wang, K., Zhao, L., Hong, H., Gong, Y., Zhang, J., & Hu, N. (2019). An analytical model for evaluating the buckling, delamination propagation, and failure behaviors of delaminated composites under uniaxial compression. Composite Structures, 223. https://doi.org/10.1016/j.compstruct.2019.110937
Yaqiang, Y., Xin, W., y Zhishen, W. (2017). Damping Behavior of Hybrid Fiber-Reinforced Polymer Cable with Self-Damping for Long-Span Bridges. Journal of Bridge Engineering, 22 (7): 05017005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001058

Published

2019-09-30

How to Cite

Fajardo, J., Villa, M., Pozo, J., & Urgilés, D. (2019). Characterization of the tensile properties of an Epoxy-Carbon laminated composite used in the development of a single-seater Formula SAE type. Enfoque UTE, 10(3), pp. 1 - 12. https://doi.org/10.29019/enfoque.v10n3.381

Issue

Section

Automation and Control, Mechatronics, Electromechanics, Automotive