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Model for estimating soil chemical properties  
with RGB drone images

Manuel Álava Bermeo1, Antony García Solórzano2, Henry Pacheco Gil3, Cristhian Delgado Marcillo4

Abstract — Precision agriculture optimizes crop management 
by providing accurate data on soil chemical properties, thereby 
improving agricultural productivity and sustainability. This study 
aims to develop models to estimate soil chemical properties, such 
as pH, electrical conductivity (EC), and organic matter (OM), by 
analyzing drone-captured RGB images. The methodology included 
photogrammetric flights with a DJI Phantom 4 Pro drone equip-
ped with a 20 Mpx camera and simultaneous sampling, laboratory 
analysis and on-site measurements, with Royal Eijkelkamp EC me-
ter set voor grond multiparameter sensors and pH meter set for 
soil and water. The aerial images were processed with the PIX4D-
mapper software, to generate the orthophoto and spectral bands. 
With the resulting orthophoto of 1.6 cm/pixel, eight spectral indices 
were calculated, using the spatial analysis tools of ArcGIS software. 
The in situ results showed an average pH value of 5.83, indicating a 
slightly acidic soil, and an EC of 1.09 dS/m, suggesting a soil with a 
low concentration of dissolved salts. Laboratory analyses showed a 
medium-high content of OM, with an average of 5.19 %. A strong 
correlation was found between OM and pH_index with coefficients 
of determination R2=0.55, while moderate correlations were also 
observed between pH with pH_index and EC with sal_index6 with 
coefficients of determination R2=-0.39 and R2=0.42 respectively. 
The aforementioned results allowed the generation of two models 
for the estimation of these variables from RGB images.1
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Resumen — La agricultura de precisión optimiza la gestión 
de cultivos al proporcionar datos precisos sobre las propiedades 
químicas del suelo, mejorando así la productividad y sostenibi-
lidad agrícola. Este estudio tiene como objetivo desarrollar mo-
delos para estimar propiedades químicas del suelo, como pH, 
conductividad eléctrica (CE) y materia orgánica (MO), mediante 
el análisis de imágenes RGB capturadas por dron. La metodolo-
gía incluyó vuelos fotogramétricos con un dron DJI Phantom 4 
Pro equipado con una cámara de 20 Mpx y la toma simultánea 
de muestras de análisis de laboratorio y mediciones in situ, con 
sensores multiparámetros Royal Eijkelkamp EC meter set voor 
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grond y pH meter set for soil and water. Las imágenes aéreas fue-
ron procesadas con el software PIX4Dmapper, para generar la 
ortofoto y bandas espectrales. Con la ortofoto resultante de 1.6 
cm/píxel, se calcularon ocho índices espectrales, usando las herra-
mientas de análisis espacial del software ArcGIS. Los resultados 
in situ mostraron un valor promedio de pH de 5.83, indicando un 
suelo ligeramente ácido, y una CE de 1.09 dS/m, sugiriendo un 
suelo con baja concentración de sales disueltas. Los análisis de 
laboratorio evidenciaron un contenido medio-alto de MO, con un 
promedio de 5.19 %. Se encontró una correlación fuerte entre la 
MO y el pH_index con coeficientes de determinación R2=0.55, por 
su parte también se observaron correlaciones moderadas entre 
pH con el pH_index y CE con el sal_index6 con coeficientes de de-
terminación R2=-0.39 y R2=0.42 respectivamente. Los resultados 
mencionados permitieron generar dos modelos para la estimación 
de estas variables a partir de imágenes RGB. 

Palabras Clave: agricultura de precisión; índices espectrales; 
Phantom 4 Pro; PIX4Dmapper, ArcGIS.

I. INTRODUCTION

AGRICULTURE is an essential activity for the survival of 
the human being, which significantly influences the eco-

nomy of Ecuador with 10 % of GDP, promoting development 
and reducing poverty contributing 19 % to the generation of 
employment [1].

By using advanced spatial analysis tools, such as Geogra-
phic Information Technologies (GIT), agriculture and soil ma-
nagement specialists can make informed decisions to optimize 
agricultural practices [2].

Soil quality is fundamental for agricultural productivity, it 
is a complex ecosystem [3], it needs to evaluate chemical para-
meters such as organic matter (OM), hydrogen potential (pH) 
and electrical conductivity (EC) to improve its structure, retain 
water and nutrients [4].

Understanding pH, electrical conductivity (EC), and organic 
matter (OM) is crucial for assessing soil quality in agricultu-
re. pH affects nutrient availability and plant growth, while EC 
indicates salt concentration, which can impact water and nu-
trient uptake. OM improves soil structure, water retention, and 
microbial biodiversity. Together, these parameters enable more 
precise soil management, optimizing conditions for healthy 
and sustainable crop development [5].

The limitation in determining the chemical variables of the 
soil lies in the constant need to evaluate the productive capacity 
of the soil through exhaustive laboratory analyses [6]. However, 
this practice faces several obstacles, as it is costly, time-consu-
ming in processing samples and, in many cases, is not carried out 
due to a lack of knowledge on the part of producers [7].
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To address this problem, it is proposed to use spectral cal-
culation from the RGB bands (corresponding to the red, green 
and blue wavelengths), of aerial images captured by low-cost 
drones, with the aim of developing a model adapted to local 
conditions that provides reliable and fast data on key chemical 
properties of the soil. Such as pH, electrical conductivity and 
organic matter content [8].

The research by Krestenitis et al. [9] presents an innovative 
path planning method for UAVs in precision agriculture. The 
goal is to acquire high-quality data in the shortest possible 
flight time by adjusting the UAV’s speed.

The integration of remote sensing technologies is presented 
as a promising tool to study the chemical properties of soil, 
offering accurate and relevant data [10].

Petrovic’s research confirms that Agriculture 5.0 has now 
begun with the widespread use of robotic systems in various 
field operations, supported by the Internet of Things (IoT), au-
tonomous self-driving devices (robots and drones), and artifi-
cial intelligence [11].

Precision agriculture in Ecuador is used in the floricultu-
re, banana, and sugar sectors, mainly for the implementation 
of automated irrigation systems, pest monitoring and control, 
moisture management, and ventilation. In this context, drones 
are used for pest detection and monitoring, as well as for topo-
graphic surveys in order to optimize crop management [12].

The implementation of TIG in the study of soil chemical 
properties involves the acquisition, organization and analysis 
of detailed geospatial data on pH, EC and OM, through the 
use of specialized tools that allow the generation of layers of 
information and the performance of spatial analyses to iden-
tify patterns and distributions where modeling techniques are 
used to predict the distribution of soil properties in unsampled 
areas. In order to optimize agricultural practices, improve crop 
management and maximize productivity in an efficient and sus-
tainable way [13].

UAV equipped with high-definition cameras and sensors like 
LiDAR, are essential tools in agricultural remote sensing. They 
enable georeferencing data and creating accurate maps of crop 
health, estimating bio-physical characteristics such as growth 
and yield. They offer an advanced alternative to traditional field 
exploration, providing detailed views at the plant and leaf level 
due to their high resolution and segmentation algorithms [14].

Mao et al. [15], point out that the use of low-end unmanned 
aerial vehicles (UAVs) has many advantages, such as low cost, 
high resolution, and considerable spatial coverage giving value to 
remote sensing data. Remote sensing is based on collecting data 
from various aerial photographs at different spectral ranges [16].

The next innovation in smart UAVs aims to transform agri-
culture with cost savings and increased yields. However, they 
face cybersecurity risks, which could be mitigated through 
Blockchain and 5G networks [17].

Tan et al. [18], highlights that drones equipped with hypers-
pectral sensors are crucial for agricultural monitoring, captu-
ring changes in vegetation and soil, and providing spectral in-
formation to monitor salinity. The use of regression algorithms, 
such as Random Forest, has matured as an effective solution 
for predicting properties like soil salinity, handling nonlinear 
fitting problems and high-dimensional data.

In the context of soil analysis, the technology of RGB image 
analysis algorithms is effectively deployed. This approach in-
volves the application of statistical and mathematical methods 
to the images acquired by a drone equipped with an RGB digi-
tal camera. Through this process, the precise identification and 
quantification of the wavelengths contained in the images is 
achieved, thus allowing a detailed analysis of soil properties in 
a non-invasive and reliable way [19].

Recent research by Lintes et al. [20] developed a radar 
method using two unmanned aerial vehicles in a bistatic sys-
tem. This system irradiates the Earth’s surface obliquely to 
create the Brewster effect, which enhances the reflection of ra-
dio signals from subsurface horizons, allowing for the determi-
nation of their physical and chemical parameters.

In a study by Ngabire et al. [21], in the Shiyang River ba-
sin, remote sensing was applied to analyze soil salinization in 
arid and semi-arid environments. A multiple linear regression 
model was used with 80 samples, divided for training and va-
lidation using the Kennard-Stone algorithm. Multicollinearity 
identification was performed with the variance inflation factor 
(VIF), adjusting covariates to ensure proper model specifica-
tion. The results showed outstanding performance, with a co-
efficient of determination R2=0.898 and a mean square error 
(RMSE) of 1.653. These findings are of vital importance to 
support the integration of remote sensing into the analysis of 
soil chemical properties.

This soil analysis study focused on addressing the imperati-
ve need to efficiently estimate the chemical parameters of the 
soil through image geoprocessing techniques, taking advantage 
of remote sensing and RGB digital camera tools. This strategy 
is based on the precise determination and evaluation of elec-
trical conductivity (EC), pH and organic matter content in the 
soil, thus offering a significant contribution to the advancement 
of sustainable management of agricultural resources [22].

II. METHODOLOGY

Location of the study area
This study was carried out on a plot of 0.38 hectares, lo-

cated in the Lodana parish of the Santa Ana canton belon-
ging to the province of Manabí. Its geographical location is 
80°23’13.60”W, 1°10’25.51”S (Fig. 1). The average tempera-
ture is 27.6°C and its average annual rainfall is 83.60 mm [23]. 
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Fig 1. Location of the study area

On-site measurements and field sampling.
To define the sampling points systematically, a system of 

diagonal transects [24] was used in the study area as shown in 
(Fig. 2). A total of 45 sampling points were surveyed Between 
July 20 and 22, 2023, coinciding with the end of the drought 
period in the area, which were georeferenced by means of a 
topographic implement called RTK (Real Time Kinematics) 
GPS model Topcon GR-5. With the coordinates generated by 
the RTK, a shapefile vector file was constructed, using ArcGIS 
software tools. Fields with the variables pH, EC and MO were 
added to the attribute table of the shapefile file with the data 
measured in the field and laboratory.

Fig. 2. Orthophoto of the area where the soil samples were obtained.

At each sampling point, the chemical parameters electrical 
conductivity (EC) and hydrogen potential (pH) were measured 
in situ using EC-pH meters [25] multiparameter sensors, which 
are equipment that have an automatic calibration and allow 
measuring pH on a scale of 0 to 14 with an accuracy of 0.01 pH 
units while for EC it performs it in a measurement range 0.1 
μS/cm to 200 mS/cm with an accuracy of 0.01 μS/cm (Fig. 3).

Fig. 3. On-site sampling with electrical conductivity (EC) and hydrogen po-
tential (pH) meters.

Before the on-site measurements were made, the ground 
was prepared by tilling the soil, with a metal tip, to loosen the 
first 5 cm of the surface layer, thus facilitating the correct in-
sertion of the sensor head. Once the sensor was inserted, it was 
waited for it to stabilize before proceeding to record the electri-
cal conductivity (EC) and hydrogen potential (pH) data. Each 
parameter was measured in three replications and the average 
value obtained was recorded.

Field sampling involved the extraction of soil samples, each of 
approximately 500 gr, using a field drill to reach depths of 20 and 
40 cm, which was mixed and homogenized to generate a compo-
site sample at each sampling site. The samples were deposited in 
duly labeled sample holder sleeves, and transported to the water 
and soil laboratory of the Faculty of Agricultural Engineering of 
the Technical University of Manabí for the respective analyses.

Laboratory tests
The laboratory analysis consisted of the determination of 

soil organic matter (OM) content by means of the loss-on-ig-
nition (LOI) or gravimetric method proposed by Schulte and 
Hopkins [26]. To determine OM, samples were kiln dried at 
105°C for 24 hours, cooled in a desiccator and then weighed 
5g of sample and placed in crucibles before being calcined at 
600°C for 2h in a Lindberg/blue M muffle furnace. After com-
bustion, the samples were cooled in a desiccator and re-weig-
hed on an analytical balance. With these values, the percentage 
of OM was calculated using [1].

 (1)

Where PSS represents the dry weight of the soil and PSI the 
weight after ignition.

Aerial image processing with drone
The aerial image capture was done with the DJI Phantom 

4 Pro drone, equipped with a 20 MPX RGB camera, capable 
of detecting the wavelengths of the color red, green, and blue 
in the visible electromagnetic spectrum [13]. The flight plan-
ning was carried out using the DJI GO4 software, this software 
allowed to define the region of interest, the flight height was 60 
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m, speed 3.3m/sec, the pixel resolution was 1.5 cm/pixel, the 
superposition of images, as well as the strategic choice of take-
off and landing points.

The RGB images obtained with the drone were subjected to 
an analysis process using the PIX4Dmapper photogrammetry 
software. This process was carried out in the Scientific Model 
and Calculation laboratory of the Faculty of Agricultural Engi-
neering of the UTM, with a high-end computer.

The processing methodology encompassed the import of 
images and coordinates of the control points, as well as the 
implementation of necessary adjustments in each phase of the 
process. These adjustments were executed in order to ensure 
exhaustive control over the quality of the data obtained through 
image processing by means of GIS [27], this process allowed 
the generation of quality photogrammetric products such as or-
thophoto, RGB bands, digital surface and terrain models, as 
well as the 3D point cloud.

With the RGB spectral bands, the respective calculation of 
the indices shown in Table I was carried out. These have been 
reported in the literature as medium-power indices [28], [29] 
and [30], to determine chemical parameters of the soil (pH, sa-
linity and organic matter), because they have only three bands 
of the electromagnetic spectrum [31].

TABLE I  
SPECTRAL INDICES TO ESTIMATE SOIL CHEMICAL PROPERTIES

Parameter Index

pH_index

sal_index1

sal_index2

sal_index3

sal_index4

sal_index5

sal_index6

carb_index

Statistical analysis
IBM SPSS Statistics (Statistical Package for Social Scien-

ces) statistical software tools were used to perform correlation 
and regression analyses, in order to model and relate the data 
obtained in the field and laboratory such as pH, EC, MO and 
spectral indices. Due to the nature of the data, Pearson’s corre-
lation was used, which varies between -1 and 1 evidenced in 
Table II, quantifies the strength and direction of the linear re-
lationship between two continuous variables; it is preferred for 
analyses where a precise linear relationship between variables 
is anticipated [32].

TABLE II  
PEARSON’S CORRELATION COEFFICIENT

Condition Degree of correlation

0.00 - 0.10 Non-existent correlation

0.10- 0.29 Weak correlation

0.30 - 0.50 Moderate correlation

0.50 - 1.00 Strong correlation

III. RESULTS AND DISCUSSION

Chemical parameters of the soil
Soil chemical parameters were determined, including pH, 

electrical conductivity (EC), and organic matter (OM) content. 
According to the values in the table indicated, the classification 
of electrical conductivity exhibits non-saline characteristics, 
with average values of 1.09 dS/m, belonging to the category of 
soils with low concentration of dissolved salts according to the 
classification of [33], shown in Table III.

TABLE III  
CLASSIFICATION OF THE ELECTRICAL CONDUCTIVITY OF SOIL 

dS/m Classification

< 2 Not saline

2 a 4 Slightly saline

4 a 8 Moderately saline

8 a 16 Strongly saline

> 16 Extremely saline

Based on the soil pH classification presented in Table IV, the 
soil was determined to be slightly acidic, with an average value 
of 5.86 according to the classification of [34]. This value indi-
cates moderate acidity, which can influence nutrient availabili-
ty and soil microbial activity, which are crucial for agricultural 
productivity and ecosystem health [22].

TABLE IV  
CLASSIFICATION OF SOIL HYDROGEN POTENTIAL

pH Classification

0.00 a 4.50 Very acid

4.50 a 5.50 Moderately acidic

5.50 a 6.50 Slightly acidic

6.50 a 7.50 Neutral

7.50 a 8.50 slightly alkaline

8.50 a 9.50 Moderately alkaline

9.50 a 14.00 Very alkaline

Regarding organic matter, an average of 5.19 % of organic 
matter was found in the soil, considered a medium-high per-
centage, according to the classification shown in Table V, [35], 
it is beneficial due to its positive effects on soil structure, water 
and nutrient retention, as well as on the promotion of microbio-
logical activity [31].
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TABLE V  
PERCENTAGE OF SOIL ORGANIC MATTER

% Range

0.00 -1.00 Low

1.00-2.50 Medium bass

2.50-4.00 Half

4.00-5.50 Medium high

5.50-7.00 High

7.00-8.50 Very high

8.50-10.00 Exceptionally high

Aerial images and spectral indices.
Fig. 4 shows the calculation of the spectral indices that yiel-

ded the best results. The pH_index stands out for indicating the 
degree of alkalinity of the soil, while the sal_index6 reflects the 
content of dissolved salts. 

Orthophoto resolution and quality
The orthophoto acquired on July 20, 2023 at 10:30 AM pre-

sents a high quality thanks to its spatial resolution of 1.6 cm/
pixel, which allows an exceptional level of detail in the repre-

sentation of the terrain. The image covers an area of 0.44 hecta-
res, captured under optimal atmospheric conditions, with clear 
skies, which ensures superior clarity and sharpness in the RGB 
bands used. In addition, the orthophoto is fully compatible and 
integrated with ArcGIS software because it is generated in a 
GEOTIFF format, facilitating its use in GIS applications and 
ensuring its efficiency in geospatial analysis.

Fig. 4. Processing of aerial images and indexes

Index statistics
Table VI shows the soil data obtained in the field and labo-

ratory, as well as the spectral indices calculated with the photo-
grammetric products.

TABLE VI  
FIELD, LABORATORY AND PHOTOGRAMMETRIC PRODUCT VALUES

Data CE pH MO Red Green Blue ph_index sal_index1 sal_index2 sal_index3 sal_index4 sal_index5 sal_index6 carb_index

1 1.50 6.20 6.00 221 212 192 0.00521 205.99 216.45 46852 -0.0702 244.02 200.15 -1.121

2 1.20 5.70 4.00 212 204 177 0.00565 193.71 207.96 43248 -0.0900 244.34 183.94 -1.105

3 1.20 5.80 4.00 211 204 171 0.00585 189.95 207.47 43044 -0.1047 251.72 176.87 -1.145

4 0.90 5.80 4.00 196 192 150 0.00667 171.46 193.99 37632 -0.1329 250.88 153.13 -1.097

5 0.90 5.30 6.00 195 190 153 0.00654 172.73 192.48 37050 -0.1207 242.16 157.03 -1.049

6 1.10 5.40 6.00 204 195 175 0.00571 188.94 199.45 39780 -0.0765 227.31 183.08 -0.985

7 0.90 5.30 6.00 152 143 125 0.00800 137.84 147.43 21736 -0.0975 173.89 132.87 -0.553

8 1.00 5.30 2.00 204 195 175 0.00571 188.94 199.45 39780 -0.0765 227.31 183.08 -0.985

9 1.00 5.40 4.00 217 211 190 0.00526 203.05 213.98 45787 -0.0663 240.98 195.40 -1.097

10 1.50 6.30 6.00 208 196 175 0.00571 190.79 201.91 40768 -0.0862 232.96 185.71 -1.025

11 1.20 5.70 6.00 207 200 172 0.00581 188.69 203.47 41400 -0.0923 240.70 178.02 -1.073

12 1.30 5.50 5.49 189 182 151 0.00662 168.94 185.47 34398 -0.1118 227.80 156.81 -0.953

13 0.60 6.60 2.45 185 186 161 0.00000 172.58 185.50 34410 -0.0694 213.73 160.13 -0.873

14 1.00 6.40 5.47 193 184 162 0.00617 176.82 188.45 35512 -0.0873 219.21 169.92 -0.913

15 1.30 6.40 5.68 179 171 149 0.00671 163.31 174.95 30609 -0.0915 205.43 155.97 -0.801

16 1.10 6.20 5.25 183 178 152 0.00658 166.78 180.48 32574 -0.0925 214.30 156.27 -0.865

17 1.00 6.20 5.39 193 187 154 0.00649 172.40 189.98 36091 -0.1124 234.36 158.94 -1.001

18 0.80 5.50 5.38 211 205 168 0.00595 188.28 207.98 43255 -0.1135 257.47 172.92 -1.177
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Data CE pH MO Red Green Blue ph_index sal_index1 sal_index2 sal_index3 sal_index4 sal_index5 sal_index6 carb_index

19 1.10 6.00 5.57 204 201 181 0.00553 192.16 202.49 41004 -0.0597 226.54 183.70 -0.985

20 1.10 5.80 6.15 178 173 162 0.00617 169.81 175.48 30794 -0.0471 190.09 166.68 -0.705

21 1.30 5.90 5.69 187 187 168 0.00595 177.25 187.00 34969 -0.0535 208.15 168.00 -0.841

22 1.00 6.00 6.32 183 180 169 0.00592 175.86 181.49 32940 -0.0398 194.91 171.82 -0.745

23 1.00 6.00 6.17 160 158 141 0.00709 150.20 159.00 25280 -0.0631 179.29 142.79 -0.609

24 1.20 6.00 5.46 190 183 168 0.00595 178.66 186.47 34770 -0.0615 206.96 174.43 -0.833

Averages 1.09 5.86 5.19 194.25 188.21 164.21 0.01 178.55 191.20 36820.13 -0.08 223.10 169.49 -0.94

5. Correlation analysis and regression models 
Pearson’s correlation coefficients are shown in Table VII.

TABLE VII  
CORRELATIONS

Red Green Blue ph_index sal_index1 sal_index2 sal_index3 sal_index4 sal_index5 sal_index6 carb_index

CE .303 .227 .354 .305 .342 .267 .271 .135 .118 ,421* -.161

pH -,369* -,350* -,339* -.394 -.051 -.093 -.113 .222 -.168 -.027 .151

MO -.279 -.316 -.199 ,545** -.246 -.298 -.293 .122 -.321 -.168 .324

In relation to soil organic matter (OM) content, a strong co-
rrelation was observed with the pH index (pH_index), eviden-
ced by a coefficient of determination R2=0.55 and RMSE 0.72 
(Fig. 6). This finding suggests that pH_index is closely related 
to the content of OM in the soil. The significance of the data 
obtained reinforces the usefulness of the pH_index as a reliable 
indicator to estimate the percentage of OM in the soil. This 
robust correlation highlights the importance of this index in the 
assessment of soil fertility and health, providing a valuable tool 
for agricultural management.

Fig. 6. Scatterplot of the correlation between WM and pH index.

Regarding pH, a moderate correlation was observed, with an 
R2=-0.39 and RMSE 0.35 between pH and pH index (Fig. 7).  
This indicates that an increase in pH is associated with a de-
crease in the pH index, revealing an inverse relationship that 
underscores the significant influence of pH on the characteris-
tics assessed by the index. 

Fig. 7. Scatterplot of the correlation between pH and pH index.

In relation to electrical conductivity (EC), a moderate corre-
lation was observed with the salinity index (sal_index6), with a 
coefficient of determination R2=0.42 and RMSE 0.17 (Fig. 8).  
This result indicates a significant relationship between soil EC 
and sal_index6, suggesting that this index may be a useful indi-
cator for estimating the soluble salt content of soil. The mode-
rate correlation observed highlights the relevance of this index 
in the evaluation of soil chemical properties.

Fig. 8. Scatterplot of the correlation between electrical conductivity and 
sal_index6.
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The simple linear regression estimation model presents 
some limitations that may be related to the presence of multi-
collinearity or outliers. To improve the implementation of these 
models, it is suggested to incorporate artificial intelligence al-
gorithms, such as artificial neural networks [36].

The implementation of RGB spectral indices for soil analysis 
and estimation of their chemical properties has significant ad-
vantages over the most advanced multispectral techniques. RGB 
sensors are much cheaper and therefore accessible to a wide au-
dience, from small farmers to researchers with limited budgets. 
In addition, these sensors are often available in common devices 
such as smartphones and drones, making them easy to use in 
various agricultural and research applications [37].

The use of this technique is simpler to implement, as the-
se sensors are easier to handle, allowing users to capture and 
analyze images without the need for specialized equipment. Its 
accessibility translates into faster processing and analysis, as 
RGB data is less complex to manage than multispectral data. 
Algorithms for processing RGB images are simpler and less 
demanding in terms of computational resources [38].

The images generated by these technologies are easily inte-
grated into common photo analysis platforms and tools, avoi-
ding the need for specialized software, although they do not 
provide the same spectral depth as advanced sensors, they are 
effective in detecting visual changes in soil and crops, in addi-
tion, these cameras are less sensitive to environmental varia-
tions such as humidity and lighting, facilitating the capture of 
images in various conditions without constant adjustments [39].

IV. CONCLUSION

The average electrical conductivity of the soil was 1.09 
dS/m, indicating non-saline conditions. The soil was determi-
ned to be slightly acidic, with an average pH value of 5.86.

The organic matter presented an average of 5.19 %, which is 
considered within a medium-high range.

Photogrammetric flight generated a high-quality orthophoto 
with a resolution of 1.6 cm per pixel. Eight RGB spectral indi-
ces were calculated, of which only pH_index showed a strong 
correlation with organic matter, with a coefficient of determi-
nation R2=0.54

On the other hand, the sal_index6 and presented a moderate 
correlation with electrical conductivity (EC), with a coefficient 
of determination R2=0.42.

Additionally, a moderate negative correlation was observed 
between pH and pH_index, with an R2=-0.39.

The rest of the indices studied showed weak relationships 
with respect to the chemical properties of the soil.

Three models were proposed to estimate soil chemical pro-
perties from spectral indices as useful indicators that can result 
in time and money savings, as well as a decrease in the environ-
mental impacts of agricultural activities.

The results obtained confirm the potential of drone-captured 
RGB images as a cost-effective and accessible alternative to 
traditional methods of soil chemical analysis.

It is essential to validate these models in various agricul-
tural environments to ensure their applicability and accuracy 

under different agroecological conditions. This validation will 
extend the robustness and reliability of the proposed approach, 
allowing its widespread adoption in different productive areas.
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