Flow Patterns in Two Nanorefrigerants R600a/CuO and R410A/CuO During the Boiling Process
DOI:
https://doi.org/10.29019/enfoqueute.1006Keywords:
Ansys Fluent, Boiling, Nanoparticles, Nano refrigerants, SimulationAbstract
The present study aims to know the flow patterns in two nanorefrigerants R600a / CuO and R410A / CuO throughout the forced boiling process in horizontal square pipes. Those are obtained using the thermophysical properties of the refrigerants R600a and R410A in state liquid and vapor, as well as the properties of the CuO nanoparticles. The analysis was carried out using two methods: analytical and numerical. The analytical method was established by formulas and correlations through scientific articles and books to find an improvement in the two-phase heat transfer, under the conditions at an inlet temperature of 8 ° C and with a quality range of 0 to 1. This allowed to verify that by adding nanoparticles to the refrigerant, the transition between the flow regimes increases progressively, while the quality of the vapor decreases. For the numerical method, the different transition limits are specified in a simulation process in the Ansys Fluent CFD Software, under established design conditions, which consequently increases the general efficiency of any refrigeration system.
Downloads
References
M. Goodarzi, I. Tlili, H. Moria, T. A. Alkanhal, R. Ellahi, A. E. Anqi, and M. R. Safaei, “Boiling heat transfer characteristics of graphene oxide nanoplatelets nano-suspensions of water-perfluorohexane (c6fl4) and water-n-pentane,” Alexandria Engineering Journal, vol. 59, no. 6, pp. 4511-4521, 2020.
A. Khan and H. M. Ali, “A comprehensive review on pool boiling heat transfer using nanofluids,” Thermal Science, vol. 23, no. 5 Part B, pp. 3209-3237, 2019.
S. Vafaei, “Nanofluid pool boiling heat transfer phenomenon,” Powder Technology, vol. 277, pp. 181-192, 2015.
A. Redhwan, W. Azmi, M. Sharif, and R. Mamat, “Development of nanorefrigerants for various types of refrigerant based: A comprehensive review on performance,” International Communications in Heat and Mass Transfer, vol. 76, pp. 285-293, 2016.
R. Wang, Q. Wu, and Y. Wu, “Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants,” Energy and Buildings, vol. 42, no. 11, pp. 2111-2117, 2010.
X. Yin, C. Hu, M. Bai, and J. Lv, “An investigation on the heat transfer characteristics of nanofluids in flow boiling by molecular dynamics simulations,” International Journal of Heat and Mass Transfer, vol. 162, p. 120338, 2020.
S. Mukthiyar, D. R. Sarath, B. V. Kumar, and A. Madabhushi, “Design and cfd analysis of r410a refrigerant in convergent nozzle,” Materials Today: Proceedings, vol. 5, no. 9, pp. 19463-19470, 2018.
Y. Heredia-Aricapa, J. Behnan-Flores, A. Mota-Babiloni, J. Serrano- Arellano, and J. J. García-Pabón, “Overview of low gwp mixtures for the replacement of hfc refrigerants: R134a, r404a and r410a,” International Journal of Refrigeration, vol. Ill, pp. 113-123, 2020.
J.-L. C. Fannou, C. Rousseau, L. Lamarche, and S. Kajl, “A comparative performance study of a direct expansion geothermal evaporator using r410a and r407c as refrigerant alternatives to r22,” Applied Thermal Engineering, vol. 82, pp. 306-317, 2015.
Y. Shao, S. Deng, P. Lu, D. Zhao, L. Zhao, W. Su, and M. Ma, “A numerical study on heat transfer of r410a during flow boiling,” Energy Procedía, vol. 158, pp. 5414-5420, 2019.
V. Nair, P. Tailor, and A. Parekh, “Nanorefrigerants: A comprehensive review on its past, present and future,” International journal of refrigeration, vol. 67, pp. 290-307, 2016.
Y. Sun, J. Wang, and Y. Hu, “Effect of refrigerant/oil solubility on thermodynamic performance of the evaporator working with r600a and dme,” The Journal of Chemical Thermodynamics, vol. 154, p. 106331, 2021.
G. A. Longo, S. Mancin, G. Righetti, C. Zilio, and J. S. Brown, “Assessment of the low-gwp refrigerants r600a, rl234ze (z) and rl233zd (e) for heat pump and organic rankine cycle applications,” Applied Thermal Engineering, vol. 167, p. 114804, 2020.
N. Gobinath and T. Venugopal, “Nucleate pool boiling heat transfer characteristics of r600a with cuo nanoparticles,” Journal of Mechanical Science and Technology, vol. 33, pp. 465-473, 2019.
A. Shafee, B. Rezaeianjouybari, M. Sheikholeslami, M. Allahyari, and H. Babazadeh, “Boiling process with incorporating nanoparticles through a flattened channel using experimental approach,” Journal of Thermal Analysis and Calorimetry, vol. 143, pp. 3569-3576, 2021.
M. Akhavan-Behabadi, M. Nasr, and S. Baqeri, “Experimental investigation of flow boiling heat transfer of r-600a/oil/cuo in a plain horizontal tube,” Experimental Thermal and Fluid Science, vol. 58, pp. 105-111, 2014.
A. Rabiee and A. Atf, “A computational fluid dynamics investigation of various nanofluids in a boiling flow field,” Progress in Nuclear Energy, vol. 95, pp. 61-69, 2017.
M. Sharif, W. Azmi, R. Mamat, and A. Shaiful, “Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants-a review,” International Communications in Heat and Mass Transfer, vol. 92, pp. 56-63, 2018.
A. Senthilkumar, A. Anderson, and R. Braveen, “Prospective of nanolubricants and nano refrigerants on energy saving in vapour compression refrigeration system-a review,” Materials Today: Proceedings, vol. 33, pp. 886-889, 2020.
E. Costa-Patry and J. R. Thome, “Flow pattern-based flow boiling heat transfer model for microchannels,” International Journal of Refrigeration, vol. 36, no. 2, pp. 414-420, 2013.
S. Mimouni, S. Fleau, and S. Vincent, “Cfd calculations of flow pattern maps and les of multiphase flows,” Nuclear Engineering and Design, vol. 321, pp. 118-131, 2017.
D. Lee, C. Jo, B. Kim, and Y. Kim, “Boiling flow patterns and dry-out characteristics of r-1234ze (e) in a plate heat exchanger,” International Journal of Heat and Mass Transfer, vol. 161, p. 120308, 2020.
Z. Yang, M. Gong, G. Chen, X. Zou, and J. Shen, “Two-phase flow patterns, heat transfer and pressure drop characteristics of r600a during flow boiling inside a horizontal tube,” Applied Thermal Engineering, vol. 120, pp. 654-671, 2017.
J. B. Copetti, B. de Sá Bekerle, M. H. Macagnan, J. C. Passos, and J. D. Oliveira, “Flow boiling heat transfer characteristics of r600a in multiport minichannel,” Heat Transfer Engineering, vol. 38, no. 3, pp. 323-331, 2017.
A. Abdollahi, H. Mohammed, S. M. Vanaki, A. Osia, and M. G. Haghighi, “Fluid flow and heat transfer of nanofluids in microchannel heat sink with v-type inlet/outlet arrangement,” Alexandria Engineering Journal, vol. 56, no. 1, pp. 161-170, 2017.
S. Sanukrishna, M. Murukan, and P. M. Jose, “An overview of experimental studies on nanorefrigerants: Recent research, development and applications,” International Journal of refrigeration, vol. 88, pp. 552- 577, 2018.
L. Cheng and L. Liu, “Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges,” International journal of refrigeration, vol. 36, no. 2, pp. 421-446, 2013.
F.-C. Software, “Engineering equation solver (ees),” 2015.
Q. Peng, L. Jia, C. Dang, X. Zhang, and Q. Huang, “Experimental investigation on flow condensation of rl41b with cuo nanoparticles in a vertical circular tube,” Applied Thermal Engineering, vol. 129, pp. 812-821,2018.
N. Kattan, J. Thome, and D. Favrat, “Flow boiling in horizontal tubes: part 1—development of a diabatic two-phase flow pattern map,” 1998.
S. Z. Rouhani and E. Axelsson, “Calculation of void volume fraction in the subcooled and quality boiling regions,” International Journal of Heat and Mass Transfer, vol. 13, no. 2, pp. 383-393, 1970.
D. Biberg, “An explicit approximation for the wetted angle in two-phase stratified pipe flow,” The Canadian Journal of Chemical Engineering, vol. 77, no. 6, pp. 1221-1224, 1999.
V. Klimenko and M. Fyodorov, “Prediction of heat transfer for two- phase forced flow in channels of different orientation,” in International Heat Transfer Conference Digital Library. Begel House Inc., 1990.
C. Park and P. Hmjak, “Co2 and r410a flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube,” International Journal of Refrigeration, vol. 30, no. 1, pp. 166-178, 2007.
O. Zürcher, D. Favrat, and J. Thome, “Development of a diabatic two-phase flow pattern map for horizontal flow boiling,” International Journal of Heat and Mass Transfer, vol. 45, no. 2, pp. 291-301, 2002.
N. Kattan, J. R. Thome, and D. Favrat, “Flow boiling in horizontal tubes: part 3—development of a new heat transfer model based on flow pattern,” 1998.
H. MORI, S. YOSHIDA, K. OHISHI, and Y. KAKIMOTO, “Dryout quality and post-dryout heat transfer coefficient in horizontal evaporator tubes,” in 3rd European thermal sciences conference (Heidelberg, 10-13 September 2000), 2000, pp. 839-844.
S. Kutateladze, “On the transition to film boiling under natural convection,” Kotloturbostroenie, vol. 3, p. 10, 1948.
I. ANSYS, ANSYS FLUENT User ‘ s Guide, 2021.
H. Hu, G. Ding, W. Wei, Z. Wang, and K. Wang, “Heat transfer characteristics of r410a-oil mixture flow boiling inside a 7 mm straight smooth tube,” Experimental Thermal and Fluid Science, vol. 32, no. 3, pp. 857-869, 2008.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Authors
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.