Estimated cost of electricity with time horizon for micro grids based on the policy response of demand for real price of energy
DOI:
https://doi.org/10.29019/enfoque.v11n1.579Keywords:
Energy Management; Electric tariffs; Real Energy Price; Smart Grids; Demand Response.Abstract
The intelligent microgrids are an efficient alternative, which allows to supply the demand decreasing the losses of the electrical system and at the same time; the environment and the consumers are the main beneficiaries. This article develops a heuristic based on an energy management model based on the real price of electricity, which will allow end users to encourage the implementation of a policy of response to demand, in order to optimize their consumption, for which a micro smart grid is analyzed, with conventional and non-conventional renewable generation, In addition, a mechanism of "real energy price" will be implemented as a policy of response to demand, with the aim of optimizing the costs of energy that will be transferred to users depending on the stratum to which it belongs, these costs will have a short-term horizon with hourly intervals, achieving a reduction in the purchase of energy from the system
Downloads
References
Aguado Alonso, M. & Rivas Ascaso, D. (2011). La Red Inteligente de Energía y Comunicaciones: Generalidades y Visión de Futuro. Guía de Redes Inteligentes de Energía y Comunicación, 11-41.
Anvari-moghaddam, A., Monsef, H. & Rahimi-kian, A. (2016). Optimal Smart Home Energy Management Considering Energy Saving and a, 6 (1): 5090.
Barrantes, J. A. (n. d.). Smart Grids Diseñando el sistema eléctrico.Calidad: Revista mensual de la Asociación Española para la Calidad 2 (2012).
Barrantes, J. A. (2012). Smart Grids. Diseñando el sistema eléctrico del futuro. Retrieved from https://www.aec.es/c/document_library/get_file?uuid=697160ba-ed93-45ce-9d2a-2ed47c445ceb&groupId=10128
Battistelli, C., Agalgaonkar, Y. P., & Pal, B. C. (2016). Probabilistic Dispatch of Remote Hybrid Microgrids Including Battery Storage and Load Management. IEEE Transactions on Smart Grid, PP(99). https://doi.org/10.1109/TSG.2016.2606560
Espina Alvarado, J. (2003). Caracterización de la Carga en Sistemas Eléctricos de Distribución. Tesis de Ingeniería. Universidad del Zulia.
Carrión Galarza, D. F. & González Sánchez, J. W. (2019). Ubicación óptima de PMU considerando restricciones de contingencias N-1 en sistemas eléctricos de potencia. Enfoque UTE, 10 (1): 1-12. https://doi.org/10.29019/enfoqueute.v10n1.437
CENACE. (2016). Informe anual 2016. Datos de demanda enero-marzo. Quito: CENACE.
Dissertation, A., & Philosophy, D. O. F. (2015). Energy management in microgrids, (August): 1-11.
Dong, Q., Yu, L., Song, W., Member, S. & Yang, J. (2017). Algorithm in Smart Grid, 4 (2): 280-296.
Ecuador. (2015). Ley Orgánica del Servicio Público de Energía Eléctrica, 1-35.
Eghbal, M., Saha, T. K. & Mahmoudi-Kohan, N. (2011). Utilizing demand response programs in day ahead generation scheduling for micro-grids with renewable sources. 2011 IEEE PES Innovative Smart Grid Technologies, ISGT Asia 2011 Conference: Smarter Grid for Sustainable and Affordable Energy Future. https://doi.org/10.1109/ISGT-Asia.2011.6167148
Energía, C. N. de. (2012). Revisión de Mecanismos de Tarificación de Implementaciones de Smartgrid (c).
Energía y Sociedad. (2010). SMARTGRIDS Redes eléctricas inteligentes. Mercados Energeticos, 1 (1): 20-39.
Espinoza, B., Alicante, U. de, Pradhan, V., Balijepalli, V., Khaparde, S., Rahiman, F. A., … Rivas. (2016). Sistema inteligente de distribución de energía eléctrica. IEEE Transactions on Smart Grid, 7 (1): 1-12. https://doi.org/10.1109/PSC.2016.7462866
García, Torres, E. M., & Isaac, I. (2016). Demand response systems for integrating energy storage batteries for residential users. In Ecuador Technical Chapters Meeting (ETCM), IEEE.
García, A. A. & Rivas. (2013). Management model of distribution networks through UML and BPL. Tecnura, 17: 109–120. https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2013.3.a10
García Torres, E. M., & Isaac, I. (2018). Optimal demand response for the recharging of electric vehicles in micro-networks type of service station by allocation of energy resources. Proceedings-3rd International Conference on Information Systems and Computer Science, INCISCOS 2018, 2018-Decem: 150-157. https://doi.org/10.1109/INCISCOS.2018.00029
García Torres, E. M. (2019). Gestión Energética en Micro-Redes basado en la Optima Respuesta de la Demanda por Precio Real de la Energía Energy Management in Micro Grids based on the Optima Demand Response by Real Price of Energy. In Proceedings - 4rd International Conference on Information Systems and Computer Science, INCISCOS 2019. Ieee.
García Torres, E. M., Benalcázar López, B. D. & Idi Amin, I. M. (2017). Analysis of the Voltage Profile by the Insertion of Electric Vehicles in the Distribution Network Considering Response to Demand. 2017 International Conference on Information Systems and Computer Science (INCISCOS), 7-13. https://doi.org/10.1109/INCISCOS.2017.26
García Torres, E. M., Águila, A., Isaac, I., González, J. W. & López, G. (2016). Analysis of Voltage Profile to determine Energy Demand using Monte Carlo algorithms and Markov Chains (MCMC). Power Engineering Conference (UPEC), 2016 51st International Universities (Mcmc): 1-6. https://doi.org/10.1109/UPEC.2016.8114092
García Torres, E. M., Amin, I., Millan, I., Gonzales, J. & López, G. (2019). Efficient scheme model for electric power tariffs with distributed generation , based on demand response. In FISE - IEEE/CIGRE CONFERENCE 2019. Ieee.
García Torres, E. M., & Isaac, I. (2017). Multi-objective optimization for the management of the response to the electrical demand in commercial users. INCISCOS 2017 International Conference on Information Systems and Computer Science, 14-20. https://doi.org/10.1109/INCISCOS.2017.25
Ghia, A. y Del Roso, A. (2009). Análisis de respuesta de la demanda para mejorar la eficiencia de sistemas eléctricos. Buenos Aires: Fodeco.
Glover, J. D. (2012). Power System Analysis and Design (Fifth edit). Nueva York: Cengage Learning.
Glover, J. D., Sarma, M. S., & Overbye, T. J. (n. d.). To Accompany Power System Fifth Edition.
goleman, daniel; boyatzis, Richard; Mckee, A. (2019). Smart Grids Colombia Visión 2030. Journal of Chemical Information and Modeling, 53 (9): 1689-1699. https://doi.org/10.1017/CBO9781107415324.004
Grainger, J., & Stevenson, W. J. (1996). Analisis de Sistemas de Potencia. Cenace, Uanl.
Guerrón, G., Garcia Torres, E. M., & Montero, A. (2014). Influencia de las ráfagas de viento en la calidad de la energía de los parques eólicos ( Influence of wind gusts in power quality on wind farms ). Enfoque UTE, 25–44.
Jáuregui Méndez, G. R., & García Torres, E. M. (2018). Programación de recursos para una óptima respuesta a la demanda por la penetración de energía renovable en micro-redes. Universidad Politecnica Salesiana. Retrieved from https://dspace.ups.edu.ec/handle/123456789/15089
Kopsidas, K., Kapetanaki, A., Levi, V. & Milanovic, J. (2016). Optimal Demand Response Scheduling with Real Time Thermal Ratings of Overhead Lines for Improved Network Reliability. IEEE Transactions on Smart Grid, 1-1. https://doi.org/10.1109/TSG.2016.2542922
Liang, H., Tamang, A., Zhuang, W. & Shen, X. (2014). Stochastic Information Management in Smart Grid. Accepted for Publication IEEE Communications Surveys & Tutorials, 1-25.
Meza Cartagena, J. F., & García Torres, E. M. (2018). Asignación de recursos para la recarga de vehículos eléctricos en estaciones de servicios basado en la respuesta a la demanda. I+D Tecnológico, 14 (2): 66-73. https://doi.org/10.33412/idt.v14.2.2075
Moreno-Munoz, A., Pallares-López, V., De la Rosa, J. J., Real-Calvo, R., González-Redondo, M. & Moreno-Garcia, I. M. (2012). Embedding Synchronized Measurement Technology for Smart Grids development. Industrial Informatics, IEEE Transactions On, PP(99), 1. https://doi.org/10.1109/tii.2012.2209659
Moreno, P., & García Torres, E. M. (2016). Respuesta a la demanda para Smart Home Utilizando Procesos Estocásticos. I+D Tecnológico, 12.
Pereira, D. E. (2014a). Introducción a las redes inteligentes. Universidad Tecnológica De Pereira.
Pradhan, V., Balijepalli, V., & Khaparde, S. (2014). An Effective Model for Demand Response Management Systems of Residential Electricity Consumers. Ieee Systems, 1-12. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6871295
Rahiman, F. A., Zeineldin, H. H., Khadkikar, V., Kennedy, S. W., & Pandi, V. R. (2014). Demand Response Mismatch (DRM): Concept, impact analysis, and solution. IEEE Transactions on Smart Grid, 5 (4): 1734-1743. https://doi.org/10.1109/TSG.2014.2309995
Roh, H., & Lee, J. (2015). Multiclass Appliances in the Smart Grid. IEEE Transactions on Smart Grid, 7 (1): 1-11. https://doi.org/10.1109/TSG.2015.2445491
Ruiz Maldonado, M. G., & Inga, E. (2019). Asignación óptima de recursos de comunicaciones para sistemas de gestión de energía. Enfoque UTE, 10 (1): 141-152. https://doi.org/10.29019/enfoqueute.v10n1.447
Secretaría de Ambiente del Municipio del Distrito Metropolitano Quito. (n. d.).
Sudriá, A. (2007). Eficiencia Energética en Distribución.
Wang, Z., & Paranjape, R. (2015). Optimal residential demand response for multiple heterogeneous homes with real-time price prediction in a multiagent framework. IEEE Transactions on Smart Grid, PP(99): 1-12. https://doi.org/10.1109/TSG.2015.2479557
Yu, M., & Hong, S. H. (2016). A Real-Time Demand-Response Algorithm for Smart Grids: A Stackelberg Game Approach. IEEE Transactions on Smart Grid, 7 (2): 879-888. https://doi.org/10.1109/TSG.2015.2413813
Zhang, D., Li, S., Sun, M., & O’Neill, Z. (2016). An Optimal and Learning-Based Demand Response and Home Energy Management System. IEEE Transactions on Smart Grid, 7 (4): 1790–1801. https://doi.org/10.1109/TSG.2016.2552169
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Enfoque UTE
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.