Implementation of a system to evaluate the coverage of the sigfox network inside buildings

Authors

DOI:

https://doi.org/10.29019/enfoqueute.859

Keywords:

SigFox, signal, power, coverage, IoT

Abstract

Low-energy wireless wide-area networks are a key technology for the development of the Internet of Things. Like any wireless communications system, it requires that during the design the place where the network will be deployed be inspected to determine the locations where the signal is weak. Sigfox is a network with wireless access that provides the connectivity service for the Internet of Things. When the sensor nodes are located inside buildings, the level of the received signal can vary, due to internal obstructions and interference, so it is necessary to have systems that take into account the technical characteristics of the Sigfox network, to measure the levels. signal strength inside buildings and identify locations where there is no signal. The implemented system allows obtaining information on the signal levels inside the buildings in order to identify the locations in which the nodes do not have connectivity with the network and find solutions to this problem before implementing the network. The system implementation uses Sipy nodes programmed with Pymark and the Sigfox cloud, while the application development uses API and APIREST in the Visual Studio development environment.

Downloads

Download data is not yet available.

References

Adepoju, O. (2022). Internet of Things (IoT). En En Re-skilling Human Resources for Construction.4.0. Springer Tracts in Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-85973-2_8

Adeunis. (2022). TD: network tester. https://www.adeunis.com/en/produit/ftd-network-tester/

Ali, I. T., y Sari, R. F. (2018). Research Opportunities of LoRaWAN for Internet of Things Implementation. 2018 2nd International Conference on Applied Electromagnetic Technology, AEMT 2018, 61–66. https://doi.org/10.1109/AEMT.2018.8572427

Atom. (2022). Atom (1.6). https://atom.io/

Febriyandi, F., Arifin, A. S., & Nashiruddin, M. I. (2020). Sigfox Based Network Planning Analysis for Public Internet of Things Services in Metropolitan Area. Proceedings - 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2020. https://doi.org/10.1109/IAICT50021.2020.9172012

Feng, Y., Junyi, H., Weipeng, A., Flanagan, C., MacNamee, C., y McGrath, S. (2019). API Monitor based on internet of things technology. Proceedings of the International Conference on Sensing Technology, ICST, 2018-December. https://doi.org/10.1109/ICSensT.2018.8603566

Foubert, B., y Mitton, N. (2020). Long-range wireless radio technologies: A survey. In Future Internet 12, (1). https://doi.org/10.3390/fi12010013

Haxhibeqiri, J., Shahid, A., Saelens, M., Bauwens, J., Jooris, B., De Poorter, E., y Hoebeke, J. (2019). Sub-Gigahertz Inter-Technology Interference. How Harmful is it for LoRa? 2018 IEEE International Smart Cities Conference, ISC2 2018. https://doi.org/10.1109/ISC2.2018.8656742

Jalowiczor, J., y Voznak, M. (2020). Proposal and implementation of probe for sigfox technology. Lecture Notes in Electrical Engineering, 554. https://doi.org/10.1007/978-3-030-14907-9_41

Lauridsen, M., Nguyen, H., Vejlgaard, B., Kovacs, I. Z., Mogensen, P.,y Sorensen, M. (2017). Coverage Comparison of GPRS, NB-IoT, LoRa, and SigFox in a 7800 km Area. IEEE Vehicular Technology Conference, 2017-June. https://doi.org/10.1109/VTCSprinyg.2017.8108182

Lavric, A., Petrariu, A. I., y Popa, V. (2019). SigFox Communication Protocol: The New Era of IoT? 2019 International Conference on Sensing and Instrumentation in IoT Era, ISSI 2019. https://doi.org/10.1109/ISSI47111.2019.9043727

Li, L., Chou, W., Zhou, W., & Luo, M. (2016). Design Patterns and Extensibility of REST API for Networking Applications. IEEE Transactions on Network and Service Management, 13(1). https://doi.org/10.1109/TNSM.2016.2516946

Microsoft. (2019). Microsoft SQL Server Management Studio (No. 18). https://docs.microsoft.com/en-us/sql/ssms/sql-server-management-studio-ssms?view=sql-server-ver15

Microsoft. (2022). Visual Studio (17.1). https://visualstudio.microsoft.com/es/vs/

Nashiruddin, M. I., y Yusri, A. (2020). SigFox Network Planning for Smart Metering Based on Intemet of Things for Dense Urban Scenario. 2020 8th International Conference on Information and Communication Technology, ICoICT 2020. https://doi.org/10.1109/ICoICT49345.2020.9166398

Parada, R., Cárdenes-Tacoronte, D., Monzo, C., y Melià-Seguí, J. (2017). Internet of Things Area Coverage Analyzer (ITHACA) for complex topographical scenarios. Symmetry, 9(10). https://doi.org/10.3390/sym9100237

Poddar, N., Khan, S. Z., Mass, J., y Srirama, S. N. (2020). Coverage Analysis of NB-IoT and Sigfox: Two Estonian University Campuses as a Case Study. 2020 International Wireless Communications and Mobile Computing, IWCMC 2020. https://doi.org/10.1109/IWCMC48107.2020.9148570

Popli, S., Jha, R. K., y Jain, S. (2019). A Survey on Energy Efficient Narrowband Internet of Things (NBIoT): Architecture, Application and Challenges. In IEEE Access (Vol. 7). https://doi.org/10.1109/ACCESS.2018.2881533

Purnama, A. A. F., y Nashiruddin, M. I. (2020). Sigfox-based internet of things network planning for advanced metering infrastructure services in urban scenario. Proceedings - 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2020. https://doi.org/10.1109/IAICT50021.2020.9172022

Pycom. (2020). pycom go invent. https://docs.pycom.io/datasheets/development/sipy/

Python Software Foundation. (2021). PyMark (0.7.1). https://pypi.org/project/PyMark/

Routray, S. K. (2020). Narrowband IoT for Emergency Medicine. En S. Routray y S. Mohanty (Eds.) Principles and Applications of Narrowband Internet of things. https://doi.org/10.4018/978-1-7998-4775-5.ch007

Sallouha, H., Chiumento, A., y Pollin, S. (2017). Localization in long-range ultra narrow band IoT networks using RSSI. IEEE International Conference on Communications. https://doi.org/10.1109/ICC.2017.7997195

Sigfox. (2022). Cobertura Sigfox. https://www.sigfox.com/en/coverage

Singh, R. K., Aernouts, M., De Meyer, M., Weyn, M., y Berkvens, R. (2020). Leveraging LoRaWAN Technology for Precision Agriculture in greenhouses. In Sensors (Switzerland) (Vol. 20, Issue 7). https://doi.org/10.3390/s20071827

Stusek, M., Moltchanov, D., Masek, P., Mikhaylov, K., Hosek, J., Andreev, S., Koucheryavy, Y., Kustarev, P., Zeman, O., y Roubicek, M. (2022). LPWAN Coverage Assessment Planning Without Explicit Knowledge of Base Station Locations. IEEE Internet of Things Journal, 9(6), 4031-4050. https://doi.org/10.1109/JIOT.2021.3102694

Winalisa, S., Nashiruddin, M. I., y Murti, M. A. (2021). Designing Sigfox Network for Public Internet of Things in Batam Island. IoTaIS 2020 - Proceedings: 2020 IEEE International Conference on Internet of Things and Intelligence Systems. https://doi.org/10.1109/IoTaIS50849.2021.9359703

Zuniga, J. C., y Ponsard, B. (2016). Sigfox System Description. Ietf 97. https://www.ietf.org/proceedings/97/slides/slides-97-lpwan-25-sigfox-system-description-00.pdf.

Published

2023-01-03

How to Cite

Egas Acosta, C., & Revelo Vizcaino, E. (2023). Implementation of a system to evaluate the coverage of the sigfox network inside buildings. Enfoque UTE, 14(1). https://doi.org/10.29019/enfoqueute.859

Issue

Section

Miscellaneous