Numerical analysis of operation of a Wave Energy Converter (WEC) using CFD

Authors

DOI:

https://doi.org/10.29019/enfoqueute.912

Keywords:

CFD, NTW, renewable Energy, VOF, WEC

Abstract

The present study numerically analyzes, using CFD, the operation of a wave energy converter (WEC) with local sea conditions. The dynamics of the device caused by the propagation of the waves was characterized in the commercial software ANSYS Fluent applying domain reduction criteria, structured cells, and dynamic mesh with 6DOF. Performing 1:5 scale simulations of a real device installed offshore the prediction of the fluid dynamics was achieved with an error between 3.6 % and 4.7 % comparing the elevation of the free surface of the waves and between 5 and 6 % in the angular displacement of the solid in relation to the experimental. For the analysis, data was extracted from the INOCAR-SWAN model at points near Esmeraldas and the Gulf of Guayaquil, detailing the feasibility of generating energy from the device in these areas. Better results in terms of device dynamics were obtained in sea states with greater depth and longer wave periods, presenting average mechanical power between 0.165 kW and 0.22 kW.

Downloads

Download data is not yet available.

Author Biography

Cristian Andrade-Terán, Escuela Politécnica Nacional, EPN, Departamento de Ingeniería Mecánica, Quito – Ecuador

Ingeniero Mecánico, Master en diseño y simulacón.

Me apasiona la investigación, la innovación y la ingeniería. Han publicado varios de mis articulos en diferentes revistas nacionales e internacionales. Me especializo en  dinamica de fluidos y transferencia de calor, me interesa tambien las energias renovables y el campo de estudio de vibraciones deterministicas y estocasticas. 

 

References

Alamian, R., Shafaghat, R. y Ketabdari, M. (2015). Wave simulation in a numerical wave tank, using BEM. AIP Conf. Proc., I(1648), https://doi.org/10.1063/1.4912978/

Andrade-Terán, C. (2022). Simulación numérica de la interacción fluido-estructura para predecir la respuesta de aerogeneradores sin palas a vibraciones inducidas por el viento en ciudades compactas. Enfoque UTE, 13(2), 1-16. https://doi.org/10.29019/enfoqueute.796/

ANSYS Inc. (2013). ANSYS Fluent Theory Guide. U.S.A. Southpointe.

Bellec, M. (2017, septiembre 28). Wave vs tidal energy: new developments in hydropower. (E. McDonnell, Ed.) Conect Global. Retrieved from https://medium.com/@CUBEConnects/wave-vs-tidal-energy-new-developments-in-hydropower-e23382ad5ef/

Bruinsma, N., Paulsen, N. y Jacobsen, N. (2018). Validation and application of a fully nonlinear numerical wave tank for simulating floating offshore wind turbines. Ocean Engineering, 147, 647-658. doi:10.1016/j.oceaneng.2017.09.054/

Chen, H., Qian, K., Zhihua, M., Wei, B., Ye, L., Derek, C. y Clive, M. (2019). Application of an overset mesh based numerical wave tank for modelling realistic free-surface hydrodynamic problems. Ocean Engineering, 97-117. doi:10.1016/j.oceaneng.2019.02.001/

Chowdhury, M., Rahman, K. y Selvanathan, V. e. (2021). Current trends and prospects of tidal energy technology. Environment, Development and Sustainability (23), 8179-8194. doi:10.1007/s10668-020-01013-4/

COAST Laboratory. (2021). Ocean Basin. (Uneversity of Plymouth) Recuperado el Febrero de 2021, de COAST Laboratory-Facilities: https://www.plymouth.ac.uk/schools/school-of-engineering-computing-and-mathematics/coast-laboratory/coast-laboratory-facilities

Fernández, Z. F., Rincon, A., Ayuso, J., Hernández, R., & Cueto, J. L. (2018). Metodología para medir la potencia absorbida en el eje z del sistema mano-brazo debida a impactos. Cadiz: XI Congreso Iberoamericano de Acústica; X Congreso Ibérico de Acústica; 49º Congreso Español de Acústica -TECNIACUSTICA’18.

Jakobsen, M., Scott, B., Iglesias, G. y Kramera, M. (2016). Characterization of loads on a hemispherical point absorber wave energy converter. International Journal of Marine Energy, 13, 1-15. doi:10.1016/j.ijome.2016.01.003/

Kayac Autovaciable. (2019, Octubre 15). Que es y cómo afecta el período a las olas. Retrieved from https://kayakautovaciable.com.ar/meteorologia/que-es-y-como-afecta-el-periodo-a-las-olas/

Kim, S., Kim, K., Park, J., Jeon, G. y Chun, H. (2016). Numerical simulation of wave and current interaction with a fixed offshore substructure. International Journal of Naval Architecture and Ocean Engineering, 8(2), 188-197. doi:10.1016/j.ijnaoe.2016.02.002/

Kramer, M., Marquis, L. y Frigaard, P. (2011). Performance Evaluation of the Wavestar

Prototype. En A. S. Bahaj (Ed.), 9th ewtec 2011: Proceedings of the 9th European Wave and Tidal Conference, Southampton, UK, 5th-9th September 2011 University of Southampton.

Maâtoug, A. M. y Ayadi, M. (2016). Numerical simulation of the second-order Stokes theory using finite difference method. Alexandria Engineering Journal, 55(3), 3005-3013. doi:10.1016/j.aej.2016.04.035/

Marques, F., Gameiro, A. y Ferreira, A. (2018). Numerical simulation of regular waves: Optimization of a numerical wave tank. Ocean Engineering, 170, 89-99. doi:10.1016/j.oceaneng.2018.10.002/

Penalba, M., Davidson, J., Windt, C. y Ringwood, J. V. (2018). A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models. Applied Energy, 655-669. doi:10.1016/j.apenergy.2018.06.008/

Perez, J. (2018). Cuantificación del potencial energético undimotriz en las costas del Caribe colombiano. Espacios, 39, 8. doi:10.17081/invinno.5.2.2758/

Piera, V. (2019, September). Wavestar, the platform that create clean energy from the waves. Retrieved from SmartGreen Post.

Ransley, E., Greaves, D., Raby, A., Simmonds, D., Jakobsen, M., & Kramer, M. (2017). RANS-VOF modelling of the wavestar point absorber. Renew Energy(109), 49-65. doi:10.1016/j.renene.2017.02.079

Ransley, E. (2015). Survivability of wave energy converter and mooring coupledsysyem using cfd (Ph.D. thesis). School of Marine Science and Engineeting,Univeristy of Plymouth.

Ransley, E., Greaves, D., Raby, A., Simmonds, D., & Hann, M. (2017). Survivability of wave energy converters using CFD. Renew Energy (109), 235-247. doi:10.1016/j.renene.2017.03.003/

Rodríguez, C. V., Ríos, A. y Luyo, J. E. (2021). CFD Design of Urban Wind Turbines: A Review and Critical Analysis. International Journal of Renewable Energy Research (IJRER), 11(2), 618-637.

SAT-INOCAR. (Abril de 2022). INOCAR-SWAM . (Instituto oceanográfico de la armada del Ecuador) Obtenido de https://www.inocar.mil.ec/modelo_olas/index.php/

Sun, L., Zang, J., Chen, L., Eatock, R. y Taylor, P. (2016). Regular waves onto a truncated circular column: A comparison of experiments and simulations. Applied Ocean Research, 650-662. doi:10.1016/j.apor.2016.03.011/

Windt, C., Davidson, J. y Ringwood, J. V. (2018). High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks. Renewable and Sustainable Energy Reviews, 93, 610-630. doi:10.1016/j.rser.2018.05.020/

Windt, C., Davidson, J., Ransley, E. J. y Greaves, D. (2020). Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter. Renewable Energy (146), 2499-2516. doi:10.1016/j.renene.2019.08.059/

Zhi, H., Zhen, L. y Hongda, S. (2018). Numerical study on overtopping performance of a multi-level breakwater for wave energy conversion. Ocean Engineering, 150, 94-101. doi:10.1016/j.oceaneng.2017.12.058/

Published

2023-04-01

How to Cite

Andrade-Terán, C., Valencia, E., Cando, E., & Cando, E. (2023). Numerical analysis of operation of a Wave Energy Converter (WEC) using CFD. Enfoque UTE, 14(2), pp. 52–65. https://doi.org/10.29019/enfoqueute.912

Issue

Section

Miscellaneous