Numerical analysis of operation of a Wave Energy Converter (WEC) using CFD
DOI:
https://doi.org/10.29019/enfoqueute.912Keywords:
CFD, NTW, renewable Energy, VOF, WECAbstract
The present study numerically analyzes, using CFD, the operation of a wave energy converter (WEC) with local sea conditions. The dynamics of the device caused by the propagation of the waves was characterized in the commercial software ANSYS Fluent applying domain reduction criteria, structured cells, and dynamic mesh with 6DOF. Performing 1:5 scale simulations of a real device installed offshore the prediction of the fluid dynamics was achieved with an error between 3.6 % and 4.7 % comparing the elevation of the free surface of the waves and between 5 and 6 % in the angular displacement of the solid in relation to the experimental. For the analysis, data was extracted from the INOCAR-SWAN model at points near Esmeraldas and the Gulf of Guayaquil, detailing the feasibility of generating energy from the device in these areas. Better results in terms of device dynamics were obtained in sea states with greater depth and longer wave periods, presenting average mechanical power between 0.165 kW and 0.22 kW.
Downloads
References
Alamian, R., Shafaghat, R. y Ketabdari, M. (2015). Wave simulation in a numerical wave tank, using BEM. AIP Conf. Proc., I(1648), https://doi.org/10.1063/1.4912978/
Andrade-Terán, C. (2022). Simulación numérica de la interacción fluido-estructura para predecir la respuesta de aerogeneradores sin palas a vibraciones inducidas por el viento en ciudades compactas. Enfoque UTE, 13(2), 1-16. https://doi.org/10.29019/enfoqueute.796/
ANSYS Inc. (2013). ANSYS Fluent Theory Guide. U.S.A. Southpointe.
Bellec, M. (2017, septiembre 28). Wave vs tidal energy: new developments in hydropower. (E. McDonnell, Ed.) Conect Global. Retrieved from https://medium.com/@CUBEConnects/wave-vs-tidal-energy-new-developments-in-hydropower-e23382ad5ef/
Bruinsma, N., Paulsen, N. y Jacobsen, N. (2018). Validation and application of a fully nonlinear numerical wave tank for simulating floating offshore wind turbines. Ocean Engineering, 147, 647-658. doi:10.1016/j.oceaneng.2017.09.054/
Chen, H., Qian, K., Zhihua, M., Wei, B., Ye, L., Derek, C. y Clive, M. (2019). Application of an overset mesh based numerical wave tank for modelling realistic free-surface hydrodynamic problems. Ocean Engineering, 97-117. doi:10.1016/j.oceaneng.2019.02.001/
Chowdhury, M., Rahman, K. y Selvanathan, V. e. (2021). Current trends and prospects of tidal energy technology. Environment, Development and Sustainability (23), 8179-8194. doi:10.1007/s10668-020-01013-4/
COAST Laboratory. (2021). Ocean Basin. (Uneversity of Plymouth) Recuperado el Febrero de 2021, de COAST Laboratory-Facilities: https://www.plymouth.ac.uk/schools/school-of-engineering-computing-and-mathematics/coast-laboratory/coast-laboratory-facilities
Fernández, Z. F., Rincon, A., Ayuso, J., Hernández, R., & Cueto, J. L. (2018). Metodología para medir la potencia absorbida en el eje z del sistema mano-brazo debida a impactos. Cadiz: XI Congreso Iberoamericano de Acústica; X Congreso Ibérico de Acústica; 49º Congreso Español de Acústica -TECNIACUSTICA’18.
Jakobsen, M., Scott, B., Iglesias, G. y Kramera, M. (2016). Characterization of loads on a hemispherical point absorber wave energy converter. International Journal of Marine Energy, 13, 1-15. doi:10.1016/j.ijome.2016.01.003/
Kayac Autovaciable. (2019, Octubre 15). Que es y cómo afecta el período a las olas. Retrieved from https://kayakautovaciable.com.ar/meteorologia/que-es-y-como-afecta-el-periodo-a-las-olas/
Kim, S., Kim, K., Park, J., Jeon, G. y Chun, H. (2016). Numerical simulation of wave and current interaction with a fixed offshore substructure. International Journal of Naval Architecture and Ocean Engineering, 8(2), 188-197. doi:10.1016/j.ijnaoe.2016.02.002/
Kramer, M., Marquis, L. y Frigaard, P. (2011). Performance Evaluation of the Wavestar
Prototype. En A. S. Bahaj (Ed.), 9th ewtec 2011: Proceedings of the 9th European Wave and Tidal Conference, Southampton, UK, 5th-9th September 2011 University of Southampton.
Maâtoug, A. M. y Ayadi, M. (2016). Numerical simulation of the second-order Stokes theory using finite difference method. Alexandria Engineering Journal, 55(3), 3005-3013. doi:10.1016/j.aej.2016.04.035/
Marques, F., Gameiro, A. y Ferreira, A. (2018). Numerical simulation of regular waves: Optimization of a numerical wave tank. Ocean Engineering, 170, 89-99. doi:10.1016/j.oceaneng.2018.10.002/
Penalba, M., Davidson, J., Windt, C. y Ringwood, J. V. (2018). A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models. Applied Energy, 655-669. doi:10.1016/j.apenergy.2018.06.008/
Perez, J. (2018). Cuantificación del potencial energético undimotriz en las costas del Caribe colombiano. Espacios, 39, 8. doi:10.17081/invinno.5.2.2758/
Piera, V. (2019, September). Wavestar, the platform that create clean energy from the waves. Retrieved from SmartGreen Post.
Ransley, E., Greaves, D., Raby, A., Simmonds, D., Jakobsen, M., & Kramer, M. (2017). RANS-VOF modelling of the wavestar point absorber. Renew Energy(109), 49-65. doi:10.1016/j.renene.2017.02.079
Ransley, E. (2015). Survivability of wave energy converter and mooring coupledsysyem using cfd (Ph.D. thesis). School of Marine Science and Engineeting,Univeristy of Plymouth.
Ransley, E., Greaves, D., Raby, A., Simmonds, D., & Hann, M. (2017). Survivability of wave energy converters using CFD. Renew Energy (109), 235-247. doi:10.1016/j.renene.2017.03.003/
Rodríguez, C. V., Ríos, A. y Luyo, J. E. (2021). CFD Design of Urban Wind Turbines: A Review and Critical Analysis. International Journal of Renewable Energy Research (IJRER), 11(2), 618-637.
SAT-INOCAR. (Abril de 2022). INOCAR-SWAM . (Instituto oceanográfico de la armada del Ecuador) Obtenido de https://www.inocar.mil.ec/modelo_olas/index.php/
Sun, L., Zang, J., Chen, L., Eatock, R. y Taylor, P. (2016). Regular waves onto a truncated circular column: A comparison of experiments and simulations. Applied Ocean Research, 650-662. doi:10.1016/j.apor.2016.03.011/
Windt, C., Davidson, J. y Ringwood, J. V. (2018). High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks. Renewable and Sustainable Energy Reviews, 93, 610-630. doi:10.1016/j.rser.2018.05.020/
Windt, C., Davidson, J., Ransley, E. J. y Greaves, D. (2020). Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter. Renewable Energy (146), 2499-2516. doi:10.1016/j.renene.2019.08.059/
Zhi, H., Zhen, L. y Hongda, S. (2018). Numerical study on overtopping performance of a multi-level breakwater for wave energy conversion. Ocean Engineering, 150, 94-101. doi:10.1016/j.oceaneng.2017.12.058/
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Authors
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.