
ENFOQUE UTE, VOL. 15, NO. 1, JANUARY 2024, pp. 36-44, E-ISSN: 1390-6542 36

Containers-Based Network Services Deployment:  
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Abstract1 — In recent years, virtualizing network services and 
functions has enabled optimizing hardware resources on resour-
ce-constrained devices, such as CPU, memory, and storage. Tra-
ditional virtualization is achieved through virtual machines using 
a layer known as a hypervisor. While this form of virtualization 
offers advantages such as scalability and portability, it has disad-
vantages in terms of performance compared to nonvirtualized de-
ployments. In this context, alternative virtualization technologies 
(like containers) allow virtualization on the same physical infras-
tructure, improving overall performance, portability, and servi-
ce scalability. This paper implements the deployment of network 
services on the Raspberry Pi development platform, which has 
limited resources. This is achieved through a multi-container vir-
tualization solution using the Docker Compose tool, based on Doc-
ker containerization technology. Finally, a performance analysis 
of the implemented virtualization solution is conducted in terms 
of resource utilization by each service. pp. 36-44
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Resumen — En los últimos años, la virtualization de servicios 
y funciones de red ha permitido optimizar los recursos de hard-
ware, como CPU, memoria y almacenamiento, en equipos con 
limitaciones de recursos. La virtualization tradicional se lleva a 
cabo mediante máquinas virtuales, utilizando una capa conocida 
como hipervisor. A pesar de que esta forma de virtualization ofre-
ce ventajas como escalabilidad y portabilidad, presenta desventa-
jas en términos de rendimiento en comparación con un despliegue 
no virtualizado. En este contexto, han surgido tecnologías alter-
nativas de virtualization (como los contenedores) que permiten 
la virtualization en la misma infraestructura física, mejorando el 
rendimiento general, la portabilidad y la escalabilidad de los ser-
vicios. En este artículo se implementa el despliegue de servicios 
de red en la plataforma de desarrollo Raspberry Pi que cuenta 
con recursos limitados. Esto se logra mediante una solución de 

Authors acknowledge the support provided by Escuela Politécnica National in 
the project PIIF-21-04. Corresponding author: christian.tipantuna@epn. edu.ec.

1 Andrés Yazán is in the Department of Electronics, Telecommunications 
and Information Networks of the National Polytechnic School, Quito 170517, 
Ecuador, (e-mail: andres.yazan@epn.edu.ec). ORCID number 0009-0001- 
7811-1275.

2 Christian Tipantuña is in the Department of Electronics, Telecommuni-
cations and Information Networks of the National Polytechnic School, Quito 
170517, Ecuador, (e-mail: christian.tipantuna@epn.edu.ec). ORCID number 
0000-0002-8655-325X.

3 Jorge Carvajal-Rodriguez is in the Department of Electronics, Telecom-
munications and Information Networks of the National Polytechnic School, 
Quito 170517, Ecuador, (e-mail: jorge.carvajal@epn.edu.ec). ORCID number 
0000-0003-0369-9964.
Manuscript Received: Sep 22, 2023
Revised: Nov 08, 2023
Accepted: Nov 27, 2023
DOI: https://doi.org/10.29019/enfoqueute.1005

virtualization multicontenedor utilizando la herramienta Docker 
Compose, basada en la tecnología de contenerización Docker. Fi-
nalmente se lleva a cabo un análisis del rendimiento de la solución 
de virtualization implementada en términos de la utilization de 
recursos por parte de cada uno de los servicios.
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tenedor; Raspberry Pi; Docker; Docker Compose; Rendimiento.

I. INTRODUCTION

THE growing demand for network services, applications, 
and resources from end-users has created limitations in 

the capacity of service providers to meet these needs due to 
a shortage of necessary hardware resources to scale propor-
tionally to the demands. Service providers have had to adopt 
new technologies to meet current demands, maximize resource 
efficiency, and offer end-users high-quality service (QoS). In 
this context, virtualization technologies plays a fundamental 
role in the information technology industry. While virtuali-
zation technologies such as Virtual Machines (VMs) provide 
virtualized services, they present significant performance and 
resource efficiency problems. For this reason, container-based 
virtualization technologies have become the preferred choice, 
as they offer highly efficient virtualized services by operating 
directly on a device’s native software infrastructure, leveraging 
the features of an operating system kernel to create virtualiza-
tion. These features include ‘namespaces’ and ‘cgroups’, which 
provide an isolated and independent environment within the 
native infrastructure in which they run [1].

This paper aims to describe, implement, and analyze a so-
lution for network services based on Docker containers. Is 
analyzed the performance of containerized services in environ-
ments with limited CPU, memory, and storage resources, such 
as Raspberry Pi development boards. To achieve this, the work 
is structured as follows:

Section II: A brief description of concepts and related work 
on virtualization technologies, virtual machines, Docker con-
tainers, network services, and microservices is provided.

Section III: Describes the methodology, test environment, 
software tools, and hardware used for designing and implemen-
ting network services using Docker containers.

Section IV: are presented the results obtained in the imple-
mentation, and evaluated the performance of the implemented 
containerization system based on CPU usage, memory usage, 
and load.

Section V: Provides concluding remarks about the work 
developed.
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II. BACKGROUND AND RELATED WORK

This section presents the fundamental concepts of virtua-
lization architectures based on Virtual Machines (VMs), fo-
llowed by container-based virtualization, emphasizing Docker 
technology. Additionally, we will provide a brief description of 
microservices infrastructure.

Virtualization is a process or technology that allows the seg-
mentation of software and hardware resources from a physical 
architecture to deploy multiple dedicated resources in virtual 
environments for processes or applications. The main virtuali-
zation technologies include those based on hypervisors and con-
tainer-based technologies. Hypervisor-based technology adds a 
layer of software to the conventional computational architecture, 
specifically to the underlying operating system, also known as 
the hypervisor. This layer virtualizes and manages the system’s 
physical resources, such as CPU, RAM, and storage, distribu-
ting them optimally for each Virtual Machine (VM). Thus, the 
hypervisor creates an isolated environment for each VM with 
its complete operating system, allowing independent execution 
from the main operating system [2], However, this hypervisor-
based approach may decrease overall performance, especially in 
environments with high resource demand. It is important to note 
that this hypervisor layer is present in all traditional virtualiza-
tion technologies, meaning its negative impact on performance 
is constant in any implementation case, as mentioned [3].

On the other hand, containerization technologies are soft-
ware that represents a virtualization operating at the kernel 
level of the operating system. They enable the execution of 
applications and services in isolated and portable environments 
within the same physical system, called containers [2], Addi-
tionally, using namespaces and cgroups, this technology allows 
the isolation and resource management for each container [4].

In practice, container processes outperform hypervisorbased 
solutions by eliminating the virtualization layer and operating di-
rectly on the host system’s kernel, as shown in Figure 1 [2], In 
addition to this advantage, containers have inherent characteris-
tics derived from underlying technologies, such as autonomy and 
independence between containers in resource usage and deploy-

ment. Portability is also noteworthy, as containers use lightweight 
application images, usually in the order of MBs, compared to the 
GBs images of VMs that include a complete operating system. 
These features enable services to achieve high scalability and 
easy migration. Furthermore, they ensure high service availabi-
lity by allowing the execution of multiple instances of the same 
application to maintain uninterrupted service, even if one or more 
containers of the same image stop working [1], [3], [5]. These 
advantages are enhanced when combined with a microservices- 
based architecture, which defines a software design model with 
functions of a service distributed through autonomous and inde-
pendent modules (Figure 2b), unlike the traditional architecture 
of monolithic applications, where functions are integrated into a 
single structure and are interdependent (Figure 2a) [6]. Container 
characteristics allow leveraging this type of model to optimize 
service deployment, unlike those based on VMs.

On the other hand, containers also have disadvantages 
compared to VMs. For example, although containers are in-
dependent and isolated entities, they do not provide complete 
isolation with the operating system where they share kernel re-
sources, as in the case of VMs. This, in turn, poses a security 
issue, as any impact at the operating system level can affect 
containers, as indicated in previous lines [7], [8], [9].

In environments with limited hardware resources, such as 
the one in this study, a container-based approach leverages the-
se characteristics for optimal and scalable service deployment. 
In this case, security is not a parameter of study, this work fo-
cuses exclusively on measuring resource usage.

Docker is an open-source containerization technology that crea-
tes, runs, and manages fightweight, portable, and self- sufficient 
containers. These features have established Docker as a leader in 
the containerization technology market [10]. Docker implements 
its architecture on the operating system kernel to achieve container 
deployment with these characteristics, utilizing namespaces and 
cgroups to isolate and manage container resources. Docker also 
uses a file system known as the ‘Advanced Union File System’ 
(AUFS) for layer based image construction, contributing to storage 
resource optimization during Docker image creation [11].

(a) Virtualization Architecture based on Hypervisor (b) Virtualization Architecture based on Containers

Fig. 1. Virtualization Architectures Comparison, based on [2], [4].
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(a) Monolithic Architecture. (b) Microservices-based Architecture.

Fig. 2. Comparison of service architectures, based on [6].

Above the underlying technologies, there is Docker’s archi-
tecture known as ‘Docker engine’, which is the specific name 
for the containerization technology developed by Docker. This 
architecture comprises ‘Docker objects’, representing functio-
nalities within the Docker environment. These functionalities 
relate to storage, networking, container images, and containers. 
These elements can have different types depending on their 
utility and characteristics. Docker objects related to storage 
functionality are called ‘Docker volumes’. These are storage 
mechanisms created from directories or files stored on the host. 
Once created, directories are mounted into the container to ac-
cess a file system outside the isolated environment, as shown 
in Figure 3a [12].

On the other hand, storage mechanisms are similar to vo-
lumes known as ‘bind mounts’. Unlike volumes, these are not 
managed by Docker. They allow data to be mounted to a spe-
cific folder on the host into a container, and the stored data 
persists beyond the container’s lifecycle, as illustrated in Figure 
3b [13]. ‘Volumes’ and ‘bind mounts’ can be used by multiple 
containers to share the same storage space. Additionally, these 
mechanisms can be employed for migrating data from contai-
nerized services, considering their functionality and ability to 
maintain data persistence between containers and over time.

Regarding network functionalities, Docker offers what are 
known as ‘Docker networks’, entities responsible for providing 
basic network functionalities through ‘network drivers’, which 
share the same name as the network they manage [14]. Docker 
provides three default networks:

• None: This Docker network has no network interface out-
side the container. It only has a connection between the 
container and the loopback interface, and it is commonly 
used for offline testing, as illustrated in Figure 4a [15].

• Bridge: The ‘bridge’ network is Docker’s default net-
work and uses Linux’s bridge functionality to allow com-
munication between containers. Docker creates virtual 
connections between containers and the virtual network 
interface called ‘dockerO’, as shown in Figure 4b. An in-
ternal network is created when this connection is establis-
hed, and IP addresses are automatically assigned to each 

container, enabling communication within this network. 
However, initially, they cannot communicate outside of 
this network. Nevertheless, using iptables and Docker’s 
Network Address Translation (NAT), it is possible to 
configure the port mapping to allow communication from 
the container network to the external network [16].

(a) Volumes

(b) Bind Mount

Fig. 3. Docker storage mechanisms: Volumes, Bind Mounts, Tmpfs Mounts, 
based on [12], [13].
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• Host: The ‘host’ network allows the container to share 
the same network namespace as the host. In other words, 
the container shares all network interfaces of the host 
without any level of abstraction between them, as shown 
in Figure 4c. Due to this configuration, this network 
offers better performance than other networks, as it does 
not require addressing, port mapping, or NAT for con-
tainer connections to an external network since the con-
tainer network is identical to the host network. However, 
it is important to mention that if two or more containers 
attempt to use the same port under a host network, con-
flicts may arise [17].

It is worth mentioning that, according to [18], [19], [20], 
‘bridge’ type networks tend to have lower performance than 
other types of networks. On the other hand, ‘host’ type net-
works, due to their network characteristics, do not have an abs-
traction level that limits their performance, as is the case with 
‘Bridge’ type networks.

III. METHODOLOGY

This section describes the process and methodology for 
implementing network services in Docker containers. All files 
used for deploying the services, such as ‘dockerfiles’ and ‘Doc-
ker compose’, along with the employed procedure, are available 
in [21]. The images corresponding to the implemented services 
are also hosted in the Docker Hub repository in [22].

A. Scenario
The implemented solution is based on Docker Compose and 

utilizes two Raspberry Pi boards to carry out a multi-container 
deployment of services. These services constitute a traditional 
Internet architecture, including DHCP, DNS, FTP, Web, VoIP, 
and Routing. All of this is achieved through a YAML file. In 
this approach, one of the Raspberry Pi boards serves as the 
main host for the containerized services, while the second one 

is used for remote client connections through the containerized 
DHCP and Routing services.

In this work, the performance of containerized services is 
examined in a wired connection, taking into account the delays 
that a wireless network may introduce. This approach is essen-
tial for delay-sensitive services, such as VoIP services, which 
require delays below 150 ms. A more detailed exploration of 
this approach is reserved for future work.

B. Physical and logical configurations
Each Raspberry Pi board uses USB-Ethernet adapters from 

the Realtek brand, model RTL8152, with up to l00baseT/Full-
Duplex capacity. This is done to expand the number of physical 
ports available for the routing service. There are 4 Ethernet in-
terfaces, 1 WLAN interface, and five virtual WLAN interfaces. 
These interfaces are associated with both an IPv4 address of a 
containerized service and a monitoring application, as shown 
in Figure 5, representing the logical distribution of the imple-
mentation on the Raspberry Pi board. Figure 6, illustrates the 
topology for the joint implementation through Docker Compo-
se. The Access Point function is also used on one of the Rasp-
berry Pi boards using Hostap software. This is done to establish 
a wireless connection for network monitoring. The SSH remote 
access service installs the board’s dependencies, access, and 
configuration. This enables wireless access to the equipment’s 
configuration or through any available Ethernet cable.

C. Base images for docker containers
The base images for Docker containers are based on Alpine 

Linux, the recommended choice for conserving storage resources 
in both the resulting images and container instances, as shown in 
[23]. As for service images, Nginx, Asterisk, and FRRouting are 
already available as dedicated images in the ARM32v7 architec-
ture. Therefore, instead of building these services completely, files 
based on these images are generated to leverage their functionality.

(a) None Networks (b) Bridge Networks (c) Host Networks

Fig. 4. Docker networks: None, Bridge, and Host Networks, based on [18].

D. Storage
Two types of volumes are used for storage: Named Volumes 

and Bind Mounts. Named Volumes are used to maintain the 

persistence of logs from containerized services and to share 
them with other containers. On the other hand, bind mounts are 
used to configure container files directly from the host.



Fig. 5. Design: Logical distribution of Docker Containers on the Raspberry Pi board.

E. Docker networks
Regarding Docker networks, the ‘host’ type network is used 

exclusively. This choice is based on previous considerations 
about Docker network performance and aims to optimize the 
implementation’s performance.

F. Measurement tools, metrics ant testing setup
For the performance analysis of containerized services, va-

rious general performance parameters are considered, such as 
CPU usage, memory usage, CPU load average, network tra-
ffic in and out, and a physical parameter, CPU temperature, for 
each containerized service. To perform this task, two compu-
ting devices are used to test the services: i) One to evaluate the 

service’s operation and ii) A second to monitor the host’s per-
formance. Detailed descriptions of these devices can be found 
in Table I.

Client 2, acting as a monitoring device in the topology shown 
in Figure 6, connects wirelessly via SSH to collect these me-
trics using various software tools. Among them is the ‘docker 
stats’ command from Docker, which measures CPU and me-
mory usage performance, and ‘Htop’ as a tool for visualizing 
CPU and RAM system resources and processes. Additionally, 
the RPI-Monitor tool, a monitoring software based on a web 
interface, is employed for system usage statistics visualization 
on Raspberry Pi devices. This allows access to performance 
metric data such as CPU load average, memory usage, and 
additional parameters like temperature.

Fig. 6. Design: Container-Based Service Deployment Topology using Docker Compose.
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TABLE I 
HARDWARE USED FOR THE TEST SCENARIO.

Model Processor Ram Memory Operative System

LENOVO IdeaPad S410p Intel(R) Core(TM) i5-4200 de 64bits CPU@1.6GHz 8 GB Windows 10 Pro

HP 15-ef1xxx AMD Ryzen 5 4500U de 64bits CPU@2.38GHz 8GB Windows 11 Home

Raspberry Pi 4B Broadcom BCM2711 Cortex-A72 (ARM v8) de 64bit @1.8GHz 4GB Debian 11 (Bullseye)

Furthermore, it is essential to consider the analysis of ser-
vices such as VoIP and assess Quality of Service (QoS) para-
meters like delay and jitter [24], For this purpose, Wireshark 
software is used on each device in Figure 6, allowing the cap-
ture and analysis of data packets based on SIP and RTP proto-
cols. This provides a deeper insight into the quality of real-time 
communication. For the measurement process, measurements 
are taken during specific periods for each containerized servi-
ce, and then the data is tabulated according to the respective 
measurement period. The data from each service’s test period 
is used and averaged in the case of results obtained through 
the RPI-Monitor tool. For data obtained through HTOP and 
Docker stats, the maximum values for each metric are taken, 
as visualized in the open SSH terminals during the test period.

G. Service software
The network services implemented in Docker containers are 

based on Linux servers following a client-server architecture. 
In this context, each service incorporates a daemon that runs 
and manages the services according to predefined configura-
tion parameters. Below are the details of each software, its con-
figuration, and the type of implementation in containers:

• Domain name resolution service: It uses a server based 
on the Internet Systems Consortium’s Berkeley Internet 
Name Domain (Bind9), one of the most popular DNS 
servers in Linux distributions. This server acts as a mas-
ter server, locally hosting primary DNS zone records and 
responding to pre-configured name resolution requests for 
each containerized service and the monitoring service.

• Addressing service: It is based on the Internet Systems 
Consortium DHCP (ISC DHCP) server, widely used for 
IP address assignment and network configuration. The 
implementation follows a basic configuration of IPv4 ad-
dress assignment to DHCP clients, providing the addresses 
of the containerized DNS server and the gateway address 
configured for each of the Raspberry Pi’s Ethernet ports.

• File transfer service: It uses the Very Secure File Trans-
fer Protocol (VSFTP) server, which allows secure and 
efficient file or directory transfers. The implementation 
uses active mode and supports custom file transfers for 
configured local users. These users are within a chroot 
environment containing a 64KB file and 70KB of stora-
ge space for file transfers with the FTP client.

• Web service: It uses a server based on Nginx, known 
for its high performance, scalability, and low resource 
consumption [25]. The web service implements a default 
web server along with two virtual web servers based on 
Nginx virtual blocks, allowing the hosting of multiple 

web pages. These pages are accessed along with the afo-
rementioned containerized DNS service.

• VoIP service: It is based on the Sangoma Asterisk ser-
ver, an open-source framework under the GPL license 
that enables the development of real-time multiprotocol 
communication applications, such as high-quality voice 
and video applications. This service implements a PBX 
server to configure and manage VoIP extensions. Four 
IP phone station extensions are configured, of which two 
are used for functional tests between two clients connec-
ted to the Raspberry Pi’s Ethernet ports to evaluate the 
containerized VoIP service without the limitations of 
wireless connections.

• Routing service: It is based on the open-source FRRou-
ting software, providing traditional router functionali-
ty. For the current implementation, the OSPF protocol 
is one of the most widely used routing protocols today. 
This protocol is the routing system between the Raspbe-
rry Pi boards, enabling connection to the services.

IV. RESULTS

A. CPU and Memory Performance Analysis
In this section, are presented the results obtained from the 

implementation using Docker Compose. As initial indicators of 
the results, data collected through the ‘Rpi-Monitor’ tool are 
obtained, which display CPU utilization statistics in Figure 7a, 
memory usage in Figure 7b, and CPU temperature in Figure 7c, 
over an entire testing interval for each of the containerized servi-
ces. For the deployment using Docker Compose, the CPU load 
average indicator starts with an initial value of 1.88 (47.08 %) 
at the host’s startup. Subsequently, this load decreases to 0.37 
(9.25 %). From this point onwards, the network service tests are 
initiated and divided into sections as detailed below.

• Section I (11:30 am - 11:40 am) - Routing: During the 
connection between the RPI devices, a maximum load 
value of approximately 1.0 (25 %) can be observed. This 
value corresponds to the initial OSPF routing process 
between the devices.

• Section II (11:45 am - 11:50 am) - End-to-end Connec-
tion: When starting the end-to-end connection tests bet-
ween the clients. During this period, the maximum load 
value reached is 0.518 (12.95 %).

• Section III (11:52 am - 11:53 am) - Connection to ser-
vers: The maximum load reached during the tests for 
connections to the containerized servers is 0.5 (12.5 %).

• Section IV (11:53 am - 11:54 am) - DNS: In this section, 
the load reaches values of 0.44 (11 %).
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(a) Resource Usage: CPU Load Average.

(b) Resource Usage: Memory Usage.

(c) Resource Usage: Temperature.

Fig. 7. Resource Usage Using RPI-MONTTOR for Docker Compose.

• Section V (11:59 am - 12:00 pm) - HTTP: The load re-
ached during the access to the HTTP pages obtains a 
maximum value of 0.863 (21.575 %). Additionally, ac-
cording to the DNS traffic I/O graphs analysis, the traffic 
increases considerably during the HTTP testing period 
and remains elevated after this test.

• Section VI (12:00 pm - 12:04 pm) - FTP: During the 
tests of the 2 FTP connections, maximum load values of 
0.801 (20.025 %) are recorded for client 1.

• Section VII (12:04 pm - 12:22 pm) - VoIP: During the 
VoIP tests, it is observed that during the call from exten-
sion 2001 to extension 2002, the CPU load reaches its 
peak, reaching 0.413 (0.33 %). The load remains low for 
the rest of the calls at an average of 0.180 (4.5 %).

Figure 7b shows the system memory usage, which remains 
constant as the tests run. The available free memory starts at 3 280 
MB during the host’s startup and remains close to 3 176.5 MB. 
This reflects a constant memory usage of approximately 617.8 
MB, concerning a total of 3 794.32 MB of available memory.

In Figure 7c the CPU temperature can be observed, which 
goes from 35.95°C at startup and increases to maintain an ave-
rage temperature of 38.6°C, with a maximum of 39.2°C during 
the HTTP tests. After the VoIP tests, it drops to 36.7°C.

The second performance indicator obtained through the 
‘docker stats’ and ‘htop’ tools is detailed in Table II. The DNS 
service stands out with a maximum CPU usage of 15.02 %, 
followed by the FTP service with usage of up to 11.89 %, and 
the VoIP service with 5.18 %. The other containerized services 
show relatively low values, all below 1 %.

Regarding memory usage, the DNS service also has the hig-
hest value, with 1.1 %, followed by the VoIP service, with 0.8 %. 
It is important to note that these memory values are constant 
for all services during the Docker Compose implementation.

B. Quality of Service Analysis
The analysis of RTP traffic provides information about the 

QoS of the VoIP service, as detailed in Figure 8. The results for 
VoIP calls are similar to those implemented previously, including:

• Payload codec: g711U vocoder.
• Packet loss: 0 % packet loss for all calls.
• Delays: Minimal delays are recorded, with slightly higher 

values for client 1 than for client 2. The averages of these 
values are 18.39 ms for client 1 and 7.63 ms for client 2. The 
average delay is 19.99 ms for both clients, with maximum 
delays of 21.74 ms for client 1 and 32.87 ms for client 2.

• Jitter: Regarding jitter, values vary significantly for client 
2, where they can reach up to 7, while client 1 experien-
ces jitters of up to 1.46.

V. CONCLUTIONS

• Implementing network services through containers allows 
for effective deployment on systems with limited CPU, 
memory, and storage resources, such as Raspberry Pi 
boards. As demonstrated in services like HTTP and VoIP, 
these instances achieved a final product, a web page, or a 
voice call without significant degradation in service qua-
lity and with optimal resource usage. For example, three 
web pages were loaded without errors in the implementa-
tion using Docker CLI for HTTP, with CPU usage as low 
as 0.47 % and memory consumption as 0.1 %. Regarding 
the VoIP service, calls were made without distortions, de-
lays, or audio loss, maintaining CPU usage at 5.18 % and 
memory consumption at 0.8 %.

• The implementation of network services through con-
tainers has shown minimal resource usage in most ca-
ses. Services like DHCP, HTTP, and Routing show zero 
CPU and memory consumption. In contrast, services 
like DNS, FTP, and VoIP show high consumption. This 
can be partly explained by factors such as the volume of 
request traffic, which, in the case of DNS, was conside-
rably higher than other services. It can also be due to the 
transfer of information, as in the case of FTP. Additiona-
lly, their position in the network architecture should be 
considered. This is because their location may imply im-
plicit involvement in other services, which, in turn, can 
increase resource consumption. This is evident in the 
case of the DNS service when used implicitly to support 
web services when making domain name resolutions to 
access a web page.



43ENFOQUE UTE, VOL. 15, NO. 1, JANUARY 2024,  pp. 36-44, E-ISSN: 1390-6542

TABLE II 
RESOURCE USAGE: CPU USAGE VIA DOCKER STATS AND ETOP

Server Docker Stats - Max.  
CPU Usage (%)

HTOP - Max CPU  
Usage (%)

HTOP - Max. RAM  
Memory Usage (%)

DHCP WlanO 0.11 0.0 0.2

DHCP Ethl 0.11 0.0 0.2

DHCP Eth2 0.11 0.0 0.2

DNS 15.02 7.3 1.1

FTP 11.89 8.5 0.0

HTTP (www, web 1, web2) 0.47 0.7 0.1

VoIP 5.18 5.3 0.8

Routing 0.12 0.10 0.1

(a) VoIP Service: RTP Details of Calls for Client 1

(b) VoIP Service: RTP Details of Calls for Client 2
Fig. 8. VoIP Service: SIP Call Details for VoIP Calls.

• The architecture of containerized services also signifi-
cantly influences their performance. This is because the 
underlying software has a variety of architectures to offer 
the service. Some services, like DHCP, DNS, and FTP, 
adopt a simple client-server architecture based on dae-
mons and configuration files. Others, like HTTP, VoIP, 
and Routing, have more complex architectures with de-
dicated modules to provide the service. For example, the 
HTTP service, based on NGINX, which allows for effi-
cient deployment without containerization, highlights 
the importance of decentralization, even when dealing 
with a single application. Its structure consists of modu-
les with internal management that favors efficiency. In 
contrast, services like VoIP and Routing have architectu-
res that can be more challenging regarding management 
and performance.

• Containerizing services provide a high level of scala-
bility, allowing the deployment of multiple containers 
to provide versatile, flexible, and efficient services. An 
example is the DHCP service, where multiple containers 
based on the same image are deployed. This provides a 
highly flexible addressing service with multiple confi-
gurations available for deployment. This achievement is 
partly due to using environment variables, which allow 

modifying a containerized service without directly mo-
difying it. This creates a scalable, dynamic, and adap-
table service that can be efficiently offered to users, as 
determined by CPU usage and memory consumption.

• Docker is a highly versatile tool that brings significant be-
nefits to the deployment of network services. Its diverse 
ecosystem encompasses essential plugins, such as storage 
through volumes and bind mounts. In this context, it has 
been observed that these mechanisms allow interaction 
with a container’s file system, making it easier to modify 
and configure a service without the need to directly ac-
cess the containerized environment or altogether remove 
the isolated environment to make changes. Additionally, 
it has been found that rebuilding containers using volu-
mes is a valuable mechanism for migrating services. An 
example of this is the use of containers to store configu-
ration logs, as in the case of routing services with ‘dae-
mon’ and ‘zebra.config’ files or in the case of the DHCP 
service with lease records in ‘dhcpd.lease’. These records 
allow replicating the same configurations in other contai-
ners, ensuring the continuity of the service. However, it 
is important to note that logs stored via volumes can be 
prone to corruption. This is because, over time, these files 
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can begin to record incomprehensible strings of charac-
ters, affecting the service’s operation.

• Another highly versatile tool for service deployment 
is network controllers through network objects. These 
networks enable the configuration and modification of 
service management and communication, providing es-
sential features such as network isolation, traffic control, 
access, and scalability. This flexibility is evident when 
implementing services with ‘bridge’-type networks. In 
this configuration, services were mapped to specific 
ports to allow external access through the container. As 
observed, using ports different from the default value for 
Network Address Translation (NAT) between the contai-
ner and the external network provided greater isolation 
and security for the service. It also allowed the incorpo-
ration of multiple containers offering the same service 
but mapped to different ports to receive the service. This 
is especially useful in services like HTTP, where high 
scalability is achieved using a different port for each con-
tainer. However, in services like passive FTP and VoIP, 
port mapping involves maintaining constant NAT over 
a range of ports (FTP: for transfer, random port >1 048, 
and VoIP: audio transmission via RTP, random port bet-
ween 10 000 and 20 000). In these cases, considering a 
NAT that covers the entire port range to obtain service 
connection on a non-specific port was impractical as it 
affects performance, as mentioned in [19], [20]. For this 
reason, using ‘host’-type networks, which remove the 
isolation level between containers and share the network 
with the host, allowed for services with low resource 
usage but limited scalability.

• Regarding the containerized VoIP service, significantly 
high performance and QoS are observed when using 
Ethernet cable transmission. This is confirmed through 
RTP parameters captured with Wireshark, where the ave-
rage delay of calls is 20 ms, compared to the maximum 
allowable delay of 150 ms, and maximum Jitter values of 
7 ms between both implementations, staying below the 
maximum allowable of 50 ms. In summary, containeri-
zing VoIP services for end-to-end calls through wired 
connections does not affect this QoS.
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