ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

GAST: A Generic AST Representation for
Language-Independent Source Code Analysis

Jason Leiton-Jimenez!, Luis Barboza-Artavia?, Antonio Gonzalez-Torres®, Pablo Brenes-Jimenez?,
Steven Pacheco-Portuguez®, Jose Navas-Su®, Marco Hernandez-Vasquez’, Jennier Solano-Cordero®,

Franklin Hernandez-Castro?, Ignacio Trejos-Zelaya'? and Armando Arce-Orozco

Abstract—OQOrganizations use various programming languages
to develop their systems. These aim to take advantage of the
most appropriate features of each language for a given domain
and require programmers to command different languages and
also to face the growing complexity of software development and
maintenance. So, they need tools to help them analyze programs
to identify relationships between their internal elements, uncover
patterns, and calculate quality metrics. However, most tools have
limited support for parsing multiple programming languages and
high acquisition costs. Therefore, there is a need for new methods
to analyze code written in multiple programming languages.
This article describes the design of a method to automatically
transform the syntax of various programming languages into a
universal language with a generic syntax. The function of the
generic language is to encapsulate the specificities of each specific
language, so that the analysis of programs is facilitated in a single
programming syntax and not in multiple syntaxes. The advantage
of this approach is that only one analysis engine is required, not
multiple code analyzers, to study the programs.

Keywords - Code transformation, Generic Abstract Syntax Tree,
Generic Language, Code Analysis.

1 J. Leiton-Jimenez works at the Department of Computer Engineer-
ing at the Costa Rica Institute of Technology (e-mail: jleiton@tec.ac.cr).
https://orcid.org/0000-0002-6271-6595.

2 L. Barboza-Artavia works at the Department of Computer Engineering
at the Costa Rica Institute of Technology (e-mail: labarboza@tec.ac.cr).
https://orcid.org/0009-0000-7524-8068.

3 A. Gonzalez-Torres works at the Department of Computer Engineering at
the Costa Rica Institute of Technology (e-mail: antonio.gonzalez@tec.ac.cr).
https://orcid.org/0000-0001-5427-0637.

4 P. Brenes-Jimenez is a masters student at the School of Computing at
the Costa Rica Institute of Technology (e-mail: pablobrenes @estudiantec.cr).
https://orcid.org/0000-0001-8394-3853.

5 S. Pacheco-Portuguez is a masters student at the School of Computing
at the Costa Rica Institute of Technology (e-mail: stpacheco@ic-itcr.ac.cr).
https://orcid.org/0000-0001-7505-1644.

6 J. Navas-Su works at the School of Computing at the Costa Rica Institute of
Technology (e-mail: jnavas@tec.ac.cr). https://orcid.org/0000-0003-3431-0122.

7 M. Hernandez-Vasquez works at the Department of Computer Engineering
at the Costa Rica Institute of Technology (e-mail: marco.hernandez@tec.ac.cr).
https://orcid.org/0000-0002-9432-721X.

8 J. Solano-Cordero works at the Department of Computer Engineering
at the Costa Rica Institute of Technology (e-mail: jensolano@tec.ac.cr).
https://orcid.org/0000-0002-0983-6512.

9 F. Hernandez-Castro works at the School of Industrial Design at
the Costa Rica Institute of Technology (e-mail: franhernandez@tec.ac.cr).
https://orcid.org/0000-0003-3589-4588.

10 1. Trejos-Zelaya works at the School of Computing at the Costa Rica
Institute of Technology (e-mail: itrejos @tec.ac.cr). https://orcid.org/0000-0003-
4361-8444.

11 A. Arce-Orozco works at the School of Computing at the Costa Rica
Institute of Technology (e-mail: arce@tec.ac.cr). https://orcid.org/0000-0001-
5005-5745.

Manuscript Received: April 19, 2023.
Revised: May 19, 2023.

Accepted: August 25, 2023.

DOI: https://doi.org/10.29019/enfoqueute.957

11

Resumen—Las organizaciones usan varios lenguajes de pro-
gramacion para desarrollar sus sistemas. Estas utilizan las
caracteristicas mas apropiadas de cada lenguaje para un dominio
determinado. Por su parte los programadores deben tener
dominio de diferentes lenguajes para hacer frente a la creciente
complejidad del desarrollo y mantenimiento del software. Asi
que necesitan herramientas que les ayuden a realizar esas
tareas. Esas herramientas deben ser capaces de analizar los
programas para identificar las relaciones entre sus elementos
internos, ayudar a descubrir patrones y calcular métricas de
calidad. Sin embargo, la mayoria tienen soporte limitado para
analizar diversos lenguajes de programacion y altos costos de
adquisicion. Por lo que existe la necesidad de contar con nuevos
métodos para analizar el codigo escrito en miiltiples lenguajes de
programacion. Este articulo describe el disefio de un método para
transformar automaticamente la sintaxis de varios lenguajes de
programacion en un lenguaje universal con una sintaxis genérica.
La funcion del lenguaje genérico es encapsular las especificidades
de cada lenguaje concreto, de manera que se facilite el analisis de
programas en una sola sintaxis de programacion y no en muiiltiples
sintaxis. La ventaja de este enfoque es que solo se requiere un
motor de analisis, no varios analizadores de codigo, para estudiar
los programas. i

Palabras Clave - Transformacion de coédigo, Arbol de sintaxis
abstracta genérica, lenguaje genérico, analisis de codigo.

I. INTRODUCTION

Due to the ever-evolving nature of software engineering
and the continuous emergence of new languages, dialects,
and language versions, the precise number of programming
languages in current use remains uncertain. According to a
study by Nanz and Furia, which examined 7,087 programs
addressing 745 distinct issues, the most popular programming
languages were found to be C, Java, C#, Python, Go, Haskell,
F#, and Ruby [1].

In the realm of modern software application development,
artifacts originating from a variety of programming languages
are often used, particularly in large-scale projects [2]. The ob-
jective is to take advantage of specific aspects of each language
to create more comprehensive, efficient, and effective systems.
However, the complexity of programming tasks and the demand
for engineers proficient in multiple programming languages
pose challenges that make development more intricate. The
intricate nature of programming lies in the unique syntax of
each language.

In order to aid development and maintenance activities,
development teams heavily rely on the utilization of tools. As-
sessing the structure and interconnections among system com-
ponents becomes challenging, especially when programmers

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

need to evaluate programs written in different programming
languages. Various techniques, such as examining source code
for patterns and interdependencies, computing quality metrics
(e.g., complexity, cohesion, direct and indirect coupling and
logical coupling), as well as identifying clones and defects, are
employed [3].

In this context, it is crucial to recognize that software
quality is a fundamental attribute that distinguishes software
and companies. The ISO / IEC 9126 standard, along with its
successor, the ISO/IEC 25000 series, defines a multidimensional
model for evaluating software quality based on factors such as
functionality, reliability, maintainability, efficiency, usability,
and portability. Additionally, developers often rely on tools to
facilitate development and maintenance processes.

Methods for source code analysis in various programming
languages, which adhere to different paradigms and possess
distinct syntaxes, typically necessitate the development of
unique analyzers for each language grammar. However, given
the vast array of existing languages and the continuous
emergence of new ones, creating a dedicated analyzer for
every language is impractical.

An alternative approach is to implement a single analyzer
that operates on a generalized representation of languages. Such
an analyzer would collect information for metric calculation,
internal software analysis, and investigation of interconnections
among system components. This approach can contribute to
cost reduction and minimize the need for language-specific
analyzers.

To achieve this, all syntactic aspects of the represented
languages must be considered and the representation itself
should be scalable to accommodate the inclusion of additional
languages. Furthermore, it should be able to adapt to the
evolving characteristics of languages. The aim of this project is
to develop a technique to automatically convert the syntax of
a specific language into a generic syntax, capturing the unique
traits of each language to enable software project analysis.

The methods for translating a language into a generic format
that are currently available are limited in number and replete
with drawbacks. These methods require separate tools for each
language, such as SonarQube [4] and Moose [5]), to analyze
the source code.

This article presents the findings of the implementation of a
Generic Abstract Syntax Tree (GAST) that possesses a unified
structure across multiple programming languages. The efficacy
of this method is demonstrated through two experiments, which
showcase the successful transformation of diverse languages
into the GAST and the ability to conduct various types of
structural analysis on it.

The subsequent sections of the article are structured as
follows. Section II provides an overview of related works
related to techniques for the transformation of source code.
Section III outlines the design and structure of the GAST,
together with the validation method used for language-specific
transformations. Section IV delves into the results and analyses
derived from the experiments conducted, which substantiate the
equivalence between specific languages and the GAST. Finally,
sections V and VI present the conclusions drawn from the
study and outline potential avenues for future research.

II. RELATED WORK

The program source code is often translated from one
language to another using transpilers. These tools enable code
to be written once and then translated into multiple target
languages, allowing translated scripts to be executed across
various platforms [6]. Transpilers commonly employ a syntax
processing module, linear mappings, and code generation as
integral components [7].

Various strategies are employed by transpilers, including
machine learning techniques, translation rules, and the use of
Abstract Syntax Trees (AST). The general principle underlying
AST techniques involves creating an AST representation of
the source code units and then mapping its components into
an AST representation of the target language.

Semantic Program Trees (PST)' transpilers follow the
following procedures [8] to convert the source code of the
program from one language to another:

1) Analyze the source code of the original program to
determine its PST.

2) Collect the libraries and dependencies utilized by the
original program.

3) Create a second PST with appropriate references for the
destination program.

4) Utilize the second PST and the grammar of the target
language to generate the source code for the final
program.

Kijin et al. propose a cross-platform strategy based on
translation rules [9]. This approach uses linear mappings,
transformations, and translation rules to establish equivalences
across syntactic elements, with the aim of automating software
translation between languages. Other approaches attempt
to convert pseudocode to source code by constructing an
intermediary model that incorporates a metamodel to represent
pseudocode in a more structured manner [10].

CRUST employs an intriguing technique, a transpiler that
converts C / C++ programs to Rust’ code. In the CRUST
conversion process, a set of compact syntactic analyzers called
Nano-Parsers [11] is utilized. These Nano-Parsers are designed
to handle specific grammars and cooperate with other analyzers,
including a Master Parser, to handle complex text inputs.

The CRUST architecture comprises two key components:
the syntax analyzer module and the code generator. The Nano-
Farsers, constituting the syntactic processing element, employ
a matching function that is activated when a regular expression
identifies a valid pattern corresponding to Rust code. However,
this strategy has two notable limitations: the need to develop
parsers for each language and the requirement to specify regular
expressions for multiple programming languages, including the
complex RPG language, which is responsible for generating
millions of lines of legacy code.

A technique known as tree-to-tree encoding and decoding
uses parse trees and deep neural networks to convert source
code from one language to another [12]. This approach includes
a training phase to enhance the encoding process. The input is

'A Semantic Program Tree (PST) is a structure similar to that an AST but
includes the semantics of the program.
Zhttps://www.rust-lang.orgRust is a language created by Mozilla.

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

—» Assembler —

—» Java —

Git —> C# — > GAST
—» Python —
—» RPG —

Fig. 1. GAST process.

encoded using a list of symbols, which assesses the likelihood
of elements and selects the one with the best fitness value from
the set. The subsequent decoding stage involves constructing
nodes in the target programming language, starting from
the root and generating offspring. Neural networks are used
to implement a tree-to-tree encoding and decoding model,
maintaining consistency with this concept [13].

Machine learning (ML) techniques have been employed
in numerous research projects for automatic source code
translation [14]. While supervised methods are commonly used,
ML techniques can be classified as unsupervised, supervised,
or reinforced. Many studies leverage source code from GitHub
projects to train supervised learning algorithms. Since ASTs
exhibit some degree of equivalence across languages, this type
of research is particularly effective for languages with a similar
level of abstraction.

Some research efforts use machine learning (ML) to translate
source code [14] automatically. ML methods are classified
as supervised, unsupervised, and reinforced, although the
most common approaches use supervised methods. Much
research uses source code from GitHub projects to train
supervised methods. This type of research operates correctly
with languages of a similar level of abstraction because the
ASTs have some equivalence with each other.

Deep learning is often employed for language translation
tasks. For example, Pengcheng and Graham utilize decoders
and encoders to construct a neural network architecture that
generates code from an AST [15]. Recurrent Neural Networks
(RNNs) are employed in the decoders to simulate the sequential
creation of a predefined AST, while Long Short-Term Memory
(LSTM) networks are utilized in the encoders to generate a set
of words. Token generation can utilize a predefined vocabulary
or directly copy from the language input. Their study aims to
produce an AST by employing grammatical model actions.

Another promising approach is the adoption of an abstract
syntax network, although this method is prone to creating
unstructured mappings during code production [16]. The model
architecture is based on a hierarchical encoder-decoder. The
decoder represents and constructs outputs in the form of
ASTs using a modular structure, as opposed to a dynamic

decoder that simultaneously develops the output tree structure.

The HEARTHSTONE benchmark yielded favorable results

- Indirect coupling

- Maintainability prediction

- Identification of code clones

- Truck factor

- Pattern identification

- GAST refactoring — dirty to clean
- Graph similarity

- Code clustering

Advanced code

> .
analysis

for code generation, achieving a BLEU (Bilingual Evaluation
Understudy) score of 79.2 % and an accuracy rate of 22.7 %
for precise matches.

Another approach to translating source code into different
languages is Statistical Machine Translation (SMT). Oda et al.
utilized this method to convert Python code into pseudocode
[17]. Their approach involves examining the source code
file word-by-word to determine the best output based on the
specified model. The code is then structured using an AST,
from which the pseudocode is generated. Although this method
is fast and automated, it does not guarantee semantic validity.
Therefore, human evaluation is necessary to assess the output’s
correctness.

Similarly, Nguyen et al. employed SMT to convert Java
source code for Android and C# for Windows Phone [18].
The concept behind their approach is to utilize SMT to infer
translation rules by leveraging already migrated code as a
baseline, rather than manually defining additional rules. They
generate a set of annotations by training a model with the
ASTs extracted from the source code. Subsequently, further
training is conducted to construct lexemes, which are combined
to produce the final C# source code.

III. GENERIC ABSTRACT SYNTAX TREE

The GAST is designed to serve as a representation of
language-specific ASTs (SASTs) in order to facilitate source
code analysis across multiple programming languages. The
definition of the GAST is based on the Meta Object Facility
Specification (MOF) [19]. Figure 1 provides an overview of
the GAST-supported process and its interaction with other
components of the analysis framework. The general steps of
this process are as follows.

1) Obtain the source code of the desired language from a
Git software repository. The GAST currently supports
several languages, including Assembler, Java, C#, Python,
and RPG.

2) Map the corresponding GAST component to each syn-
tactic part of the SAST for each language (see Figure
2)).

3) The Advanced Code Analysis Engine (ACAE) utilizes
the GAST format as input to perform various types of
analysis.

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

Figure 2 specifically illustrates the process of integrating a
specific language into the GAST. The input for this process
is the source code of the target program, while the validated
GAST representation serves as the output. This process consists
of three steps:

1) During the parsing phase, the source language and source

code are provided to obtain the SAST.

2) Certain syntactic elements of the SAST are transformed

into corresponding constituents of the GAST.

3) The mapping’s validity is verified by comparing the

structures of the GAST and SAST to ensure their
similarity.

Source Code

Parsing
Parse the source code to
produce a SAST
SAST
Mapping
Map the SAST to GAST
GAST
Validation
Compare the GAST and SAST
to verify their equivalence
Validated
GAST

Fig. 2. Stages for the conversion of source code into the GAST.

To generate each unique Abstract Syntax Tree (AST), a
parser generator or specialized tool is necessary. In this study,
ANTLR is used for languages other than Java, where the Java
Development Toolkit (JDT) is employed for parsing Java source
code and obtaining the corresponding AST [20].

The mapping stage determines the equivalence between
syntactic components of the SAST and the corresponding
structures in the GAST. The mapping rules that establish the
connection between SAST and GAST elements are specified.
MapStruct [21] is utilized to define these rules and perform the
mapping of elements. In addition to supporting linear mappings
between objects, MapStruct is capable of recursive processing
during element mapping.

Once the parsing and structure mapping stages are completed,
the validation phase begins. This phase ensures that the mapper
has correctly linked all syntactic components from the SAST
into the GAST tree. The validation phase is discussed in more
detail in Section III-A.

Figure 3 depicts the high-level package diagram illustrating
the structure of the GAST. The primary package, denoted as
ASTMCore, encompasses three sub-packages: ASTMSeman-
tics, ASTMSyntax, and ASTMSource. Each of these packages

serves a distinct purpose within the GAST framework, as
follows:

ASTMSemantics: The GAST structure is not concerned with
semantic elements. However, it requires some elements to
establish connections between syntactic elements, such as
variable scopes within code blocks, is crucial. Considering
the possibility of nested blocks, such as conditionals and
nested loops, it is important to incorporate recursion in
the class that models the scope.

To determine the validity scope of a component, various
syntactic element scopes are implicitly modeled. For
example, a variable defined within an if statement can
only be used within the block of instructions associated
with that if statement and not within an else statement.
The ASTMSyntax package of the GAST structure is
responsible for emulating the syntactic components of
programming languages and encompasses a significant
number of classes within the GAST framework. The main
components of this package are outlined in Figure 3.

ASTMSyntax: The ASTMSyntax package of the GAST struc-
ture is responsible for emulating the syntactic components
of programming languages and encompasses a significant
number of classes within the GAST framework. The main
components of this package are outlined in Figure 3.

Declarations and Definition: This package includes all
syntactic elements that involve the declaration or
definition of variables, functions, or data. It provides
modeling capabilities for these elements.

Expressions: The Expressions package represents com-
posed instructions that relate to other valid expressions.
It includes binary operations, conditionals, type con-
versions, aggregations, function calls, and arithmetic
operations.

Statement: This package closely resembles expressions
as it employs expressions to control the flow of exe-
cution for each instruction. It encompasses statements
such as while, if, for, return, or break. For instance,
an if statement consists of the then and else parts,
each containing instructions that may have their own
scope. These instructions are often associated with
an expression that determines the flow of execution,
thereby establishing connections with classes in the
expressions package.

Types: The Types package encompasses both primitive
types and built-in types. It is relevant to the Declarations
and Definitions package as it models named, aggregate,
function, and namespace types, as well as formal
parameter types.

ASTMSource: This package focuses on the compilation unit,
which serves as an abstraction of a source file. The class
contains attributes such as language, package, scope, and
import list, which define the fundamental structure of object-
oriented code. The class representing a compilation unit
also models additional data such as the file’s location, the
position of its lines of code, and references to other files.

After mapping the instructions from a SAST into the GAST,
the accuracy of the result is validated.

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

1
ASTMCore
— — —
ASTMSemantics ASTMSyntax ASTMSource
Declaration o)
and Definition Dirsctives Expression Statement Types

Fig. 3. High-level package structure diagram of the framework.

A. GAST validator

Following the completion of the mapping process, an
essential automated task involves validating and verifying
the accuracy of the mapping. Name equivalences play a key
role in this process, as dictionaries are employed to establish
connections between the two structures. The validator not
only obtains the names of the leaf nodes but also establishes
the corresponding nodes between the GAST and the SAST,
ensuring the information contents of these nodes are equivalent.

The objective of this task is to verify the effectiveness of the
mapping by ensuring that every element present in the SAST is
also accurately represented in the GAST. Successful completion
of this task confirms that the attributes of the analyzed files
have been correctly mapped, thus demonstrating the GAST’s
fidelity as a representation of the original program.

The GAST validator generates a report that highlights the
differences between the mapping of the SAST and the GAST.
It identifies the file paths where non-conformances are located,
providing insights into any inconsistencies.

The flowchart in Figure 4 illustrates the algorithmic process
of the validator. It operates after generating the SAST and
GAST for the given file. The initial phase of the algorithm
involves retrieving the methods of a node. Subsequently, it
compares the approaches of the two syntactic trees to determine
their equivalence.

The dictionary containing the equivalences between the
structures is utilized to facilitate the comparison. The algorithm
then traverses the trees, ensuring that all nodes and leaf nodes
in both trees are equivalent. Given that variables, constants,
or modifiers are crucial components in both the SAST and
GAST, their names can be used as values for comparison in
the leaf nodes. If any discrepancies arise in the values of these
elements between the two trees, the validator generates a report
accordingly.

IV. RESULTS AND ANALYSIS

This section presents and analyzes the results of two
experiments conducted to substantiate the following:

1) The feasibility of employing a unified AST to represent
programs written in multiple programming languages.
This is demonstrated in Section IV-A where the mapping
of different SASTs to the GAST is discussed.

Start

Y

Get methods from |
nodes A

Y

Find corresponding
methods

Y

Execute the defined
methods to obtain the
next nodes

Are the nodes
leaves?

Have the nodes
the same value

Report the error

Yes

A

Print the report

End

Fig. 4. Validation algorithm for the SAST and GAST structure.

2) The adoption of the GAST representation allows for the
development of a unified source code analyzer capable
of analyzing diverse programming languages. Sections
IV-B and IV-C validate the use of the GAST for the
analysis of source written in multiple languages.

Furthermore, we showcase the structural capabilities of the
GAST by applying various metrics to the GAST of the JDT
project.

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

A. Mapping SAST to GAST

The aim of this experiment is to evaluate the GAST’s ability
to accurately represent the syntactic elements of multiple
SASTs and assess the feasibility of establishing a linear
mapping between their corresponding elements. To ensure
equivalence between the created SASTs and the GAST, RPG,
C#, and Java were selected as target languages for testing. The
projects selected for this experiment are listed in Table I. The
assessment was carried out through the following steps:

1) The experiment proceeds as follows:Create the GAST
structure for each project. 2) Verify the correct mapping
between all SAST elements and the corresponding elements in
the GAST. 3) Generate of a report highlighting the mapping
differences between the SAST and the GAST. Compile statistics
on the execution times of the project’s code transformations.

1) The experiment proceeds as follows:Create the GAST
structure for each project.

2) Verify the correct mapping between all SAST elements
and the corresponding elements in the GAST.

3) Generate of a report highlighting the mapping differences
between the SAST and the GAST.

4) Compile statistics on the execution times of the project’s
code transformations.

TABLE I
PROGRAMS USED TO VALIDATE THE MAPPING

Number
Project Language
of files
Arduino 279 Java
DT 8365 Java
Java Design Patterns 1478 Java
NTLR v4 188 C#
ShareX 742 C#
Maui 6336 C#
Company project (confidential) 92 RPG

The GAST is a tree-based structure that serves as a
representation of the source code. In this context, the code
fragment depicted in Figure 5 can be directly correlated with
the corresponding tree representation displayed in Figure 6.

public void setAttributes(SimpleAttributeSet
attributes) {
this.attributes = attributes;

Fig. 5. Source code fragment in Java.

v returnType {1}
¥ typeName {1}
namestring : void
v formalParameters [1]
v @ {2}
¥ identifierName {1}
nameString : attributes
v definitionType {1}
» typeMams {1}
{1}

¥ subStatements [1]

v body

v @ {1}
v expression {3}
» operator {1}
» leftOperand {2}
» rightOperand {1}
v modifiers [1]
v @ {1}
modifier : public
v identifierName {1}

nameString @ setAttibutes

Fig. 6. Source code mapping into the GAST.

The code fragment depicted in Figure 5 exemplifies a public
method called setAttributes. In the GAST, this method is
represented within the modifier tag with a value of public.
Additionally, the GAST represents the return type of the
method as void within the returnType tag. The method name,
setAttributes, is represented as a leaf node in the GAST within
the identifierName branch.

In Figure 6, the formalParameters branch of the GAST
displays a single offspring representing the parameter of
the function described in the code fragment, which is also
illustrated in the same Figure. The parameter’s name in
the source code, identifierName, is represented as a leaf
node within the GAST under the attributes section of the
function. Additionally, the function body contains an expression
involving left and right operand operators, both of which are
listed under the subStatements branch in the GAST.

The code fragment serves as an illustrative example of map-
ping source code to the GAST structure, and the aforementioned
statements facilitate a manual examination of the syntactic
components of the setAttributes function. However, relying
solely on manual verification is time-consuming, error-prone,
and may lead to overlooking certain issues. To address this
limitation, the technique incorporates a mapping validator that
automates the verification process.

Figure 7, similar to Figure 8, depicts the source code mapped
to the corresponding GAST structure. The same tests conducted
on previous examples were also applied to this specific sample,
ensuring consistency and enabling a comprehensive evaluation
of the GAST’s ability to accurately represent the syntactic
components and structures of the source code.

Although the process of syntactic verification for the
two trees is time-consuming, it is essential to establish the

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

equivalence between the SASTs of each language and the
GAST (as shown in Table II). The lack of parallelism in the
procedure significantly contributes to the prolonged duration
of the study. Currently, the analysis is performed in serial
mode, sequentially checking each file, which consumes a
considerable amount of time.

TABLE II
TRANSFORMATION OF JAVA, C# AND RPG SOURCE CODE

Time with Time without
Language Project
verifier verifier
Arduino 15.130 9.223
Java Design Patterns 47.121 19.832
JDT 646.253 97.544
ANTLR v4 26.404 14.216
C# ShareX 15.059 8.070
Maui 2390.123 1118.999
RPG Files 78.308 42.406
public abstract bool Matches(int symbol, int
minVocabSymbol, int maxVocabSymbol);

Fig. 7. Source code of Transition.cs.

However, the results demonstrate the effective conversion of
source code in the supported languages into the GAST, even
for large projects like JDT, which encompasses over 8,000
files.

B. Homogenizing the analysis

This experiment aims to demonstrate the feasibility of
standardizing the analysis of program constituents and gram-
matical structures across different programming languages. The
experimental procedure is outlined as follows:

1) Develop two applications, one in Java and another in C#,

with identical functionality.
2) Create Specific Abstract Syntax Trees (SASTs) for each
program, corresponding to Java and C#.

3) Verify the similarity between the resulting Generic
Abstract Syntax Trees (GASTs) generated for Java and
C#.

4) Evaluate the results of code clone analysis when applied

to the generated GASTs.

To illustrate this experiment, a representative chess game
code was implemented in both Java and C# to showcase the
analysis of the representation rather than the original syntax of
the programs. The objective is to transform equivalent programs
written in different programming languages into a generic
syntax, enabling their analysis.

The chess program’s architecture incorporated abstract
classes and object arrays, utilizing class inheritance and associ-
ation. This design choice adds complexity to the transformed

v returnType {2}
v typelMame {1}
nameString ° bool
p dataType {1}
v formalParameters [3]
v 0 {2}
v identifierName {1}
nameString @ symbol
v definitionType {2}
v typelame {1}
nameString : int
» dataType {1}
v 1 {2}
v identifierName {1}
nameString © minVocabSymbol
v definitionType {2}
v typelame {1}
nameString : int
» dataType {1}
» 2 {2}
v modifiers [2]
v 0 {1}
modifier : public
v 1 {1}
modifier : abstract
v identifierName {1}

nameString © Matches

Fig. 8. Mapping of the ANTLR project’s file Transition.cs.

GAST structure and enhances its ability to accurately represent
real-world development programs.

For the purpose of comparison, the clone detection metric,
capable of distinguishing Type I, II, and III clones [22] (with
our research focusing on evaluating Type II clones), was
implemented. Figures 9 and 10 present an excerpt of a clone
found in the Java version, corresponding to the C# version of
the program.

Table III lists the significant clones identified by the clone
detector, excluding set and get methods. All identified clones
were discovered in both the C# and Java versions of the
Chess project using the GAST representation. The source code
for both versions and the identified clones can be found at
https://github.com/JasonLeiton/Ajedrez.

The results demonstrate that the GAST representation of
both programs effectively identified clones, yielding reliable
outcomes. This outcome supports the notion that analysis
can be standardized by utilizing a universal structure to
generate equivalent representations across various programming
languages. As such, the development of a unified analyzer
capable of operating with multiple programming languages
and facilitating cross-language comparisons becomes a feasible
endeavor with the utilization of this abstract syntax.

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

public boolean ValidateRightDiagonalDown(int x1,
boolean flag = true;
while (x1 + 1 <= x2 & y1 + 1 <= y2) {
if (board[xl1+1][yl+1].isTaked()) {
5 flag = false; break;
; }

x14++; yl++;

return flag;

o

int yl, int x2, int y2) {

Fig. 9. First method from the class Board of the chess project that was detected as a clone.

public boolean ValidateRightLeftDown(int x1, int

boolean flag = true;
while (x1 — 1 >= x2 && yl-1 >= y2) {
if (board[x1-1][yl-1].isTaked()) {
5 flag = false; break;
; }

x14++; yl++;
}

return flag;

U; }

Fig. 10. Second method detected as clone

TABLE III
CLONES FOUND IN THE CHESS PROJECT

GAST Java GAST C#
Initialize ValidateLinesStraightHorizontalD
Initialize ValidateLinesStraightVertical

ValidateDiagonalRightDown ValidateDiagonalLeftDown

ValidateDiagonalRightDown ValidateLinesStraightHorizontalD

ValidateDiagonalRightDown ValidateLinesStraightVertical

ValidateDiagonalLeftDown ValidateLinesStraightHorizontalD

ValidateDiagonalLeftDown ValidateLinesStraightVertical

ValidateLinesStraightHorizontalD ValidateLinesStraightVertical

ValidateL ValidateR

ValidateMove SetPiece

C. GAST applications

The conversion of source code from a specific programming
language to a universal language enables the evaluation of
software quality and maintainability. In our study, we conducted
an analysis of the JDT project to generate code analysis tests
for key applications. The resulting JDT GAST was stored in
a Neodj database, a graph-oriented database that facilitates
the visualization of classes, methods, and relationships, and
enables the calculation of various metrics.

To determine the indirect connections between nodes, we
devised metrics that capture the methods of classes and establish
associations between them [23]. Figure 11 illustrates two
distinct classes, JavaMethodFiltersTable and TypeFilterAdapter,

vl,

int x2, int y2) {

each with methods that call other methods, allowing us to
establish two types of associations. The first type, CALLS,
signifies that one method in the code invokes another method.
The second type corresponds to OWNS_METHODS, indicating
that the method is a member of the class.

Moreover, employing a universal language analysis enables
the collection of quantitative and analytical software mea-
surements. Examples include metrics such as lines of code
(LOC), methods called (CALLS), methods being called by other
methods (CALLED BY), and cyclomatic complexity (CYC).
The work by Navas-Su et al. [23] provides detailed explanations
of how these metric values were computed. Table IV presents
the results of each metric for the two JDT approaches.

The primary objective of gathering these metrics is to en-
hance software maintainability and facilitate informed decision-
making to ensure positive effects of code modifications.
Cyclomatic complexity (CYC), a particularly relevant metric,
provides insights into the extent of a method’s utilization within
a software project. This understanding allows for an assessment
of the potential impact of modifying, eliminating, or creating
a new method that depends on others (or vice versa), and can
assist in identifying ineffective approaches.

Furthermore, the application of GAST in academic settings of-
fers additional benefits, particularly in supporting programming
instructors and guiding students. GAST automates the exami-
nation of various aspects of computational thinking, including
flow control, data representation, problem decomposition, and
the identification of common programming errors. As a result, it
can effectively contribute to student assessments. By leveraging
GAST, instructors can assess and evaluate students’ levels of
computational proficiency, providing valuable assistance in
teaching activities. This automated evaluation process enhances
efficiency and ensures consistent, objective assessment criteria,
benefiting both students and educators.

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

org.eclipse.j- org.eclipse.j-
dt.experim... org.eclipse.j- dt.experim...
& dt.experim...
OWNS_METHOD org.eclipse -
JavaMethod L M
FiltersTable < A
- =
7
TypeFilter
Adapter
0
o s
org.eclipse.j- Mgy,
dt.experim... aQ Hop
3 £
Q*}' g« org.eclipse.j-
L ol dt.experim...
org.eclipse.j- o =
dt.experim... o ° §
org.eclipse.j- \% 5
dt.experim... P
org.eclipse j-
org.eclipse.- dt.experim...
dt.experim... org.eclipse.j-
dt.experim...

Fig. 11. Two specific classes of the JDT project JavaMethodFiltersTable and TypeFilterAdapter represented by the red circles, with their respective method

membership relationships and calls to other methods.

V. CONCLUSIONS

The evaluation of software quality heavily relies on source
code analysis, which traditionally requires the development of
language-specific metrics to accommodate the unique syntax
of each programming language. In this paper, we propose an
alternative approach by introducing a universal structure based
on the MOF 2.0 specification.

This universal structure serves as a representation for
multiple abstract syntax trees from various programming
languages. Its design emphasizes extensibility, allowing for
the inclusion of new languages and enabling comprehensive
support for quality control and software maintenance tasks.

The adoption of a universal representation for multiple
programming languages contributes to standardizing the field
of software analysis. By creating metrics once for all languages,
this approach offers the advantage of reusability as new
languages are integrated into the universal structure, enhancing
flexibility in analysis.

The Generic Abstract Syntax Tree (GAST) plays a crucial
role in establishing equivalence among elements from diverse
programming languages. This allows for consistent analysis
techniques to be applied across languages belonging to different
paradigms. By utilizing a single structure with adaptable metric
definitions, it becomes possible to compare the behavior of
components in RPG, Java, C#, and other languages. Even
though these components may differ, it can be demonstrated
that they are substantially equivalent, and metrics can be derived
accordingly for software developed in various languages.

However, the method’s limitation lies in the conversion
process from language-specific Abstract Syntax Trees (ASTs)

to the GAST, as it relies solely on the structure of the AST.

Each language requires a unique mapping procedure, specifying
equivalence criteria for every syntactic element. To ensure
accurate transformation of all syntactic elements into the GAST
the other modules that use the GAST do not need to verify the
completeness of the syntactic elements due because they are
checked during the process of constructing the transformer.

TABLE IV
METRICS FOR THE DOUBLECLICKED AND DOBUTTONPRESSED METHODS
OF THE JDT PROJECT

Metric name doubleClicked doButtonPressed
calledBy 0 2
calls 2 1
cyc 2 6
feye 2 6
Sfhal 1180.96 965.09
floc 22 19
Sfnom 4 2
hal 33 846.49
loc 2 18
nom 1 1
rcyc 2 7
rhal 33 1001.35
rloc 2 21
rnom 1 3

ENFOQUE UTE, VOL. 14, NO. 4, OCTOBER 2023, PP. 9-18, E-ISSN: 1390-6542

The results obtained showed that the validation of the
mapping is a time-consuming task. However, it represents
an advantage because the other modules that use the GAST do
not need to verify the completeness of the syntactic elements
due to the checking performed when building the transformer.

The outcomes of our study clearly demonstrate the GAST’s
efficacy in facilitating program analysis, cross-language code
comparisons, and educational assessments. This research paves
the way for the development of advanced source code analyzers,
software metric collection and calculation tools, and training
resources that seamlessly operate across multiple programming
languages.

VI. FUTURE WORK

The GAST serves as a foundational framework for various
ongoing initiatives within our research team. To thoroughly
validate and understand its potential limitations and challenges,
we are actively converting source code from different languages
to the GAST and conducting comprehensive studies.

Exploring the reverse process of generating source code
from the general abstract syntax tree and producing code
in specialized languages is a topic of future investigation.
Currently, the GAST structure is successfully used to generate
code in Java, C#, and Python. This opens up possibilities for the
development of many-to-many language translators, enabling
code generation in multiple target languages from a single
GAST representation.

To expedite the syntactic verification process for the two
trees, we propose the incorporation of parallelism into the
analysis workflow. By leveraging the computational power
of modern systems, parallel processing can be employed to
simultaneously analyze multiple files. This approach efficiently
distributes the workload across threads or processors, resulting
in faster analysis and significantly reduced turnaround time.
Harnessing the potential of parallelism enhances the speed
and efficiency of analysis, ultimately improving the overall
effectiveness of the verification task.

The GAST project also finds utility in the analysis of
malware code. Decompiling binary files and converting them
to GAST representation allows for the extraction of associated
assembly code. By employing search algorithms, it becomes
possible to identify coding patterns associated with malicious
code, enabling early detection of malware.

Furthermore, the GAST serves as the foundation for a novel
initiative in clone detection across programs written in different
languages or different versions of the same language. Our
experiments involve improved meta-data and semi-structural
code-to-code comparisons, utilizing deep learning techniques
for resemblance analysis of digital images derived from GAST
representations, and structural GAST-based similarity analysis

REFERENCES

[11 S. Nanz and C. A. Furia, “A Comparative Study of
Programming Languages in Rosetta Code,” p. 778-788, 2015,
https://doi.org/10.1109/ICSE.2015.90.

[2] Z. Mushtaq, G. Rasool, and B. Shehzad, “Multilingual Source Code
Analysis: A Aystematic Literature Review,” IEEE Access, vol. 5, pp.
11307-11336, 2017, https://doi.org/10.1109/ACCESS.2017.2710421.

[3]

[4]
[5]

[6

=

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, “Analysing software
repositories to understand software evolution,” pp. 37-67, 2008, ISBN:
978-3-540-76440-3.

Sonar, “Sonarqube,” Electronic,
https://www.sonarsource.com

O. Nierstrasz, S. Ducasse, and T. Girba, “The Story of
Moose: an Agile Reengineering Environment,” ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 5, pp. 1-10, 2005,
https://doi.org/10.1145/1095430.1081707.

M. Papadakis, M. Delamaro, and Y. Le Traon, “Mitigating the Ef-
fects of Equivalent Mutants with Mutant Classification Strategies,”
Science of Computer Programming, vol. 95, pp. 298-319, 2014,
https://doi.org/10.1016/j.scic0.2014.05.012.

F. A. Bastidas and M. Pérez, “A Systematic Review on Transpiler
Usage for Transaction-Oriented Applications,” in 2018 IEEE Third
Ecuador Technical Chapters Meeting (ETCM). 1EEE, 2018, pp. 1-
6, https://doi.org/10.1109/ETCM.2018.8580312.

D. L. Whitfield and M. L. Soffa, “An Approach for Exploring
Code Improving Transformations,” ACM Transactions on Program-
mming Languages Systes, vol. 19, no. 6, p. 1053-1084, nov 1997,
https://doi.org/10.1145/267959.267960.

K. An, N. Meng, and E. Tilevich, “Automatic Inference of Java-to-Swift
Translation Rules for Porting Mobile Applications,” in Proceedings of
the 5th International Conference on Mobile Software Engineering and
Systems, 2018, pp. 180-190, https://doi.org/10.1145/3197231.3197240.
T. Dirgahayu, S. N. Huda, Z. Zukhri, and C. I. Ratnasari, “Automatic
Translation from Pseudocode to Source Code: A Conceptual-Metamodel
Approach,” in 2017 IEEE International Conference on Cybernetics and
Computational Intelligence (CyberneticsCom). 1EEE, 2017, pp. 122-128,
https://doi.org/10.1109/CYBERNETICSCOM.2017.8311696.

N. Shetty, N. Saldanha, and M. Thippeswamy, “CRUST: AC/C++ to Rust
Transpiler Using a “Nano-parser Methodology” to Avoid C/C++ Safety
Issues in Legacy Code,” pp. 241-250, 2019, ISBN:978-981-16-1344-9.
M. Drissi, O. Watkins, A. Khant, V. Ojha, P. Sandoval, R. Segev,
E. Weiner, and R. Keller, “Program Language Translation Using a
Grammar-Driven Tree-to-Tree Model,” arXiv preprint arXiv:1807.01784,
2018, https://doi.org/10.48550/arXiv.1807.01784.

Jun 2023. [Online]. Available:

“Tree-to-Tree Neural = Networks for Program Translation,
author=Chen, Xinyun and Liu, Chang and Song, Dawn,
journal=arXiv preprint arXiv:1802.03691, year=2018,

note="https://doi.org/10.48550/arxiv.1802.03691”.”

M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample, “Un-
supervised Translation of Programming Languages,” arXiv preprint
arXiv:2006.03511, 2020, https://doi.org/10.48550/arXiv.2006.03511.

P. Yin and G. Neubig, “A Syntactic Neural Model for General-
Purpose Code Generation,” arXiv preprint arXiv:1704.01696, 2017,
https://doi.org/10.48550/arXiv.1704.01696.

M. Rabinovich, M. Stern, and D. Klein, “Abstract Syntax Net-
works for Code Generation and Semantic Parsing,” arXiv preprint
arXiv:1704.07535, 2017, https://doi.org/10.48550/arXiv.1704.07535.

Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Naka-
mura, “Learning to Generate Pseudo-Code from Source Code Using
Statistical Machine Translation,” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015, pp. 574—
584, https://doi.org/10.1109/ASE.2015.36.

A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Migrating Code with
Statistical Machine Translation,” in Companion Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 544-547,
https://doi.org/10.1145/2591062.2591072.

OMG. (2016) About the Meta Object Facility Specification, Version
2.5.1. [Online]. Available: https://www.omg.org/spec/MOF

T. Parr, The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013,
ISBN=978-1-934356-99-9.

Mapstruct. (2018, jul) Mapstruct Java Bean. [Online]. Available:
https://maven.apache.org/

W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting Code Clones with
Graph Neural Network and Flow-Augmented Abstract Syntax Tree,”
in 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2020, pp. 261-271,
https://doi.org/10.1109/SANER48275.2020.9054857.

J. Navas-Su and A. Gonzalez-Torres, “A Method to Extract Indirect
Coupling and Measure its Complexity,” in 2018 International Conference
on Information Systems and Computer Science (INCISCOS). IEEE,
2018, pp. 186-192, https://doi.org/10.1109/INCISCOS.2018.00034.

