
ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 9

Distributed Congestion Control Based on Utility
Function

Edison Segarra-Guzman1, Patricia Ludeña-González2

Abstract—This paper introduces the Distributed Utility Func-
tion Algorithm (D-AFU) as a notable progression in managing
and optimizing network traffic within distributed settings. Based
on the utility function principle, D-AFU dynamically adjusts
data rate in response to ever-changing network demands, with
optimal performance and a higher user experience. Contrary to
the centralized model, D-AFU employs a distributed, scalable
and resilient against failures and system overloads mechanism.
Its efficiency was validated using the NS-3 simulator. Three
main metrics were used: the data rate allocation, utility per
session, and fairness (quantified by the Gini coefficient). D-AFU
displays exceptional performance and low latency, particularly
vital for real-time applications with high Quality of Service (QoS)
requirements.

Keywords - Congestion Control, Utility Function, Real-Time
applications, Elastic Applications, Distributed Optimization,
Proactive Algorithm.

Resumen—El artı́culo presenta el Algoritmo de Función de
Utilidad Distribuida (D-AFU) como una notable evolución en la
gestión y optimización del tráfico de red en entornos distribuidos.
Basado en el principio de función de utilidad, D-AFU ajusta
dinámicamente la velocidad de datos en respuesta a las demandas
cambiantes de la red, con un rendimiento óptimo y una mejor
experiencia para el usuario. A diferencia del modelo centralizado,
D-AFU emplea un mecanismo distribuido escalable y con mayor
resistencia contra fallos y sobrecargas del sistema. Su eficiencia
fue validada utilizando el simulador NS-3. Se utilizaron tres
métricas principales: la tasa de asignación de transmisión, la
utilidad por sesión y la equidad (cuantificada por el coeficiente de
Gini). D-AFU mostró un rendimiento excepcional, especialmente
vital para aplicaciones en tiempo real que exigen alta Calidad
de Servicio (QoS) y baja latencia.

Palabras Clave - Control de congestión, Función de Utili-
dad, Aplicaciones en Tiempo Real, Aplicaciones Elásticas, Op-
timización Distribuida, Algoritmo Proactivo.

I. INTRODUCTION

IN recent years, data networks users have increased con-
siderably. It causes big information quantity be transfered

in and between networks, demanding more links capacity in
them. Nowadays, everyone wants to be always connected by
shortening distances, thus telecommunications are a critical
factor and optimization of available resources is required to

1Edison Segarra-Guzmán. Of Universidad Tecnica Particular de Loja, (e-
mail: eesegaarra@utpl.edu.ec). ORCID number 0009-0006-9784-434X.

2Patricia Ludeña-González. Of the Departamento de Ciencias de la
Computación y Electrónica, Universidad Técnica Particular de Loja, (e-mail:
pjludena@utpl.edu.ec). ORCID number 0000-0002-8909-4837.

Manuscript Received: 26/08/2023
Revised: 20/11/2023
Accepted: 18/02/2024
DOI: https://doi.org/10.29019/enfoqueute.994

guarantee QoS. This mission comes with great challenges.
Table I shows the number of devices currently connected to
the Internet [1].

Problems such as limited memory resources in routers and
bandwidth in links, generate network congestion, according to
Kurose [2]. It causes packet loss and delay, therefore, in the
literature the occurrence of these phenomena is considered
a clear sign of congestion. Congestion causes packets to be
retransmitted, affecting network performance. For this reason,
throughout the networks evolution, several methods have been
developed to control congestion and thus provide an efficient
and reliable way to transmit data. Traditional congestion
control protocols work by using a window to limit the amount
of data a source can transmit to the network. The congestion
window is a measure of the amount of data the remitter can
send without receiving an acknowledgment from the destina-
tion. These protocols implement a flow control mechanism
that prevents a source from sending more data than a receiver
can process [3]. To reach the optimal congestion window,
start with a low transmission rate and slowly increase it until
fill the capacity of the network. Although these algorithms
are widely used, their application in modern networks is
inefficient, since they take a long time to reach full network
capacity, so they are being replaced by more sophisticated
protocols that avoid congestion without affecting network
capacity utilization [4]. This paper provides a detailed and
critical analysis of existing congestion control algorithms and
presents an innovative approach that improves the efficiency
of data transmission in networks. It uses utility function
to assign data rate, following Max–Min fairness criterion.
Thus, it contributes to the academic debate on congestion
control in data networks, and provides a practical and feasible
solution. It can serve as a starting point for future research
and development in this knowledge area.

II. STATE OF THE ART

Congestion control is one of the most crucial issues in the
field of networks, due to its direct impact on performance and
quality of service. This aspect becomes even more relevant in
the face of increasing network traffic demand.

Based on their behavior in response to congestion, the
algorithms can be classified into two main categories [5]:
- Proactive: They prevent congestion even before it occurs.
These algorithms evaluate the state of the network taking mea-
sures periodically and determine the optimal transmission rates
or window sizes before starting data transmission, anticipate
congestion problems.



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 10

TABLE I
COMPARISON OF INTERNET USE BETWEEN 2017 AND 2022.

Year Internet users (billions) Devices and connections (billions) Bandwidth Video applications
2017 3.4 18.0 39.0 Mbps 75%
2022 4.8 28.5 75.4 Mbps 82%

- Reactive: After the congestion occurs these algorithms
take necessary measures to counteract it. In large networks, a
large number of packets may even be discarded, causing packet
retransmission and generating communication delays, before
the congestion is detected. It combines the pro-activity in the
sense that it dynamically calculates the available bandwidth
and adjusts the congestion window and the reactive part.
For example, it is like Transmission Control Protocol (TCP)
(Tahoe, Reno, NewReno, among other) works. It reacts to vari-
ations in the packet loss rate, RTT and throughput to calculate
the congestion control factor and adjust the CWND [3].

According to Alizadeh [6], the search for new methods
for congestion control for data centers is because they react
to congestion after it has already occurred, this can lead to
performance degradation and packet loss, on the one hand,
small windows of the key features of the two protocols: Slow
start when first establishing a TCP connection, the sender
starts with a small window size and gradually increases the
window as packets are acknowledged. These two mechanisms
work together to adjust TCP’s transmission rate to network
conditions. ‘Slow start’ allows TCP to quickly ‘bootstrap’ to a
reasonable congestion window size, while Additive Increment,
Multiplicative Decrement (AIMD) allows TCP to adjust the
sending rate in response to congestion once the connection is
up and running. It mitigates congestion by incrementally scal-
ing the volume of traffic transmitted over the network. Upon
reaching a predefined threshold, the sender transitions into
congestion prevention mode. In this mode, the sender incre-
mentally expands the window size for each acknowledgment
received, thereby proactively averting network congestion.

Both are effective in preventing congestion and guaranteeing
reliable delivery of data [7] but are not optimal for datacenter
deployments because they are designed for long-lived connec-
tions with slow startup phases and congestion avoidance.

Modern congestion control algorithms are proactive. How-
ever, they are more complex than traditional congestion control
algorithms and may not be suitable for all networks. Constant
monitoring may generate additional overhead on network
resources, which could negatively affect overall performance.
Then, proactive algorithms have a higher processing load than
reactive algorithms.

According to Ludeña-González, López-Presa and Muñoz [8]
proactive congestion control through explicit rate control
(ERC) mechanisms has been proposed as a viable alternative to
improve efficiency and fairness in communication networks.
These algorithms calculate explicit rates to improve conver-
gence time and ensure a fair distribution of resources among
competing sessions.

Shiyong Li [9] considers the problem of bandwidth allo-
cation in peer-to-peer (P2P) networks which are a type of
decentralized network where users can share resources with

each other, a new approach for bandwidth allocation based
on utility optimization is proposed. The paper considers two
types of services: elastic services and inelastic services. Elastic
services are services that can adapt to the available bandwidth
and inelastic services are services that must have a constant
bandwidth. The bandwidth allocation scheme is based on a
gradient-based algorithm. It works by finding the direction of
greatest increase (or decrease, depending on the context) in a
function, and then updating the parameters (in this case, the
bandwidth allocation for different data flows) in that direction
[10].

In Bahnasy work [11], a distributed congestion avoidance
algorithm that functions at both the Ethernet layer and the TCP
layer, is proposed and named Ethernet Congestion Control
Zero-tailed Congestion Control Protocol (ECCP). It controls
data traffic according to the estimated available bandwidth over
a network path and attempts to keep link occupancy below
the maximum capacity by a percentage called the Availability
Threshold. Each node in the network maintains a link capacity
table, when a node receives a packet, it updates its fields for
the link on which the packet was received, then the node
uses that link data (capacity) to estimate the available network
bandwidth. To control the transmission rates of the sessions
each node maintains a flow table. When a node receives a
packet, it updates the rate table for the flow that sent the
packet. Then, the node, once its session table is updated,
calculates the maximum transmission rate for each flow.

Adams indicates in his research conclusions that working
with active queue management (AQM) is an important tech-
nique for congestion control in data networks. [12] AQM
algorithms can be used to improve network performance by
reducing packet loss, queuing delay, and throughput reduction.
Random Early Detection (RED) algorithm is part of the AQM
family. It is used to avoid congestion by randomly discarding
packets when the queue length exceeds a certain threshold.
When congestion occurs, the queue length of a router interface
increases which can cause delays for packets entering in a
queue order and can even cause packets to be lost. However,
it is inefficient in cases where, according to Varma [13], the
number of connections passing through the link becomes too
small, or the latency and capacity for the connection becomes
too great.

Shuihai Hu, et. al., [14] also notes that proactive conges-
tion control algorithms have been proposed to improve the
performance of data center networks by explicitly scheduling
data transmissions based on network bandwidth availability.
However, these algorithms can perform poorly for small
flows, which typically have short durations and low bandwidth
requirements, so they propose as a solution a new algorithm
called Aeolus. It addresses the problem of poor performance
for small flows, in turn allows new flows to start at line



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 11

rate or the full available link capacity and then selectively
discard excess unscheduled packets once congestion occurs,
the protocol is evaluated through simulations with realis-
tic workloads, provides support for simulation of a variety
of network protocols at various levels, allowed researchers
to model and analyze the performance of networks under
different conditions [15]. Showing that the algorithm can
significantly speed up small flows, for example, offering 55.9
% less 99th percentile completion time, while retaining all
the good properties of proactive solutions. It functions by
maintaining two separate queues for each flow: a scheduled
queue and an unscheduled queue. When a new flow arrives,
adds its packets to the scheduled queue and starts sending them
at line rate. If congestion occurs, starts discarding packets from
the unscheduled queue. When congestion is low, increases the
size of the scheduled queue, allowing more packets to be sent
at line speed [14]. The paper ‘Accurate Congestion Control
for RDMA Transfers’ by Dimitris Giannopoulos et al. [16]
proposes a new congestion control protocol for Remote Direct
Memory Access (RDMA) transfers technology that allows
two computers to exchange data directly from their memory
without involving the operating system or CPU. ACCurate is
crafted to embody efficiency and fairness in congestion con-
trol. Its precision is achieved through an algorithm dedicated
to estimating available bandwidth. The efficiency is notable as
it doesn’t necessitate the maintenance of per-flow state within
the network. Moreover, its commitment to fairness is evident
in its assignment of accurate Max–Min fair rates to all flows.
The novelty of ACCurate lies in its hardware-based design and
implementation for congestion control. Through comprehen-
sive performance evaluations conducted under diverse loads,
the results demonstrate that it surpasses TCP-derived protocols
and RDMA PAUSA-only in terms of flow completion times
and fairness.

In addition, for data centers, Mahmoud Bahnasy and Halima
Elbiaze [17] indicates how data centers have evolved from
a common Ethernet network to a new era of data-intensive
applications such as remote direct memory access, high per-
formance computing and cloud computing, which pose new
challenges for researchers, requiring minimal network latency,
no packet loss and fairness between flows. Faced with the
problem posed the authors propose the congestion control
protocol for converged data access (DCB) networks (called
HetFlow) is designed to achieve fairness between flows of
different packet sizes and different RTTs by using a per-
flow delay-based congestion control algorithm to adjust the
sending rate using feedback messages in each flow based on
the measured delay.

It is important to clarify that this protocol is within the
congestion control group at the Ethernet layer, unlike protocols
such as the Data-Center TCP (DCTCP) which are within the
congestion control protocols of the transport layer and its
Functionality leverages explicit congestion notification (ECN)
in the network to provide multi-bit feedback to end hosts, when
a switch detects congestion, marks packets with the Conges-
tion Experienced (CE) code point. DCTCP hosts observe these
markings and reduce their sending rate accordingly, this helps
to keep queue occupancy low, which influences low latency

and high throughput, it is more resilient to bursts of traffic
and is currently one of the most widely used protocols in
datacenters. It uses a multiplicative decrementing algorithm
of additive increase to recover from congestion [6].

Congestion control in data centers presents challenges due
to RTTs expressed in microseconds, the arrival of bursty flows,
and a large number of concurrent flows [18]. These factors can
force a flow to send at most one packet per RTT or induce a
large backlog in the queue. The widespread use of switches
with short buffers further exacerbates the problem, as hosts
generate multiple flows in bursts. As link speeds increase,
algorithms that gradually seek bandwidth take considerable
time to reach their fair share. This is why Cho, Jang, and
Han [18] propose ExpressPass, a credit-scheduled, end-to-
end, delay-scheduled congestion control algorithm for data
centers. It uses credit packets to manage congestion, even
before sending data packets, leading to bounded delay and
fast convergence. This approach handles bursty flow arrivals,
for implementation, the results ExpressPass converges up to
80 times faster than DCTCP on 10 Gbps links and the gap
increases as link speeds increase. It significantly improves
performance under heavy incast workloads and significantly
reduces flow completion times [18]. Into wireless networks
the authors M. Singh S, et. al, [19] propose the Dynamic
TCP (D-TCP) algorithm. It learns the available bandwidth
and adjusts the congestion window. It first estimates the
available bandwidth using a combination of methods, such
as packet loss rate, RTT, and throughput. Once the available
bandwidth is estimated, it uses this information to calculate a
congestion control factor. Then, this factor is used to adjust the
congestion window, which is the amount of data a sender can
send before receiving an acknowledgment, D-TCP attempts to
adaptively bring the CWND to the previous state with the help
of the calculated bandwidth (based on learning). This helps
to efficiently control CWND for better network utilization,
especially under conditions of high packet loss and high delay
bandwidth product.

Machine Learning (ML) is a branch of artificial intelligence
that focuses on the development of algorithms and statistical
models that allow computer systems to learn and improve their
performance based on data and past experience, rather than
being explicitly programmed [20]. Within trend analysis in
congestion control there are works that use ML for congestion
control, the work of Ning Li, et. al., [9], presents AdaBoost-
TCP in a satellite network, where congestion control in highly
dynamic networks represents a significant challenge due to
the frequent switching of satellite links. In the context of
this paper ‘boost’ refers to the process of converting a set
of weak learners into a strong learner, and ‘adaptive’ refers to
how AdaBoost adjusts the misclassification weights to guide
the learning of weak learners [21]. Switching in satellite
networks can result in connection instability and increase
packet loss, thus reducing network efficiency. TCP fails to
effectively distinguish packet loss types, leading to network
underutilization [22]. The sender adopts adaptive congestion
control measures based on the type of packet lost, which
allows for greater efficiency in congestion management. The
results, when the packet loss rate is between 10−5 and 10−4,



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 12

the AdaBoost-TCP strategy can increase throughput by 10
% compared to other congestion control algorithms, such as
Hybla [23] which was designed to improve TCP throughput
over links with long RTT. In addition, AdaBoost-TCP shows
good fairness in comparison to NewReno.

Mozo, López-Presa and Fernandez Anta [24] presents an
algorithm based on Max–Min fairness, named B-Neck. It is a
distributed, quiescent and proactive protocol. It calculates the
optimal data rates for each session without any information
about routers flows. B-Neck converges to the optimal solution
very fast and keeps the queues short. It is quiescente because
stop to transmit packets if reach the optimal data rate, thus it
saved energy and bandwidth.

The work of Ludeña-González, López-Presa, and Muñoz [8]
proposes a solution to achieve maximum-to-minimum fairness
(UMMF) in high-speed multipath networks. A centralized
algorithm called c-SLEN (Saturation Level Explicit Notifi-
cation) is presented and is based on the saturation level of
the links to compute the fair rates of flows without affecting
the throughput due to link capacity. In addition, a distributed
version called d-SLEN is developed, which is the first of its
kind and is characterized by its convergence speed independent
of network capacity. Simulation results show that c-SLEN
achieves session rates similar to other UMMF algorithms, but
without saturating links, which improves network utilization.
In addition, d-SLEN exhibits faster and more stable conver-
gence than other distributed approaches.

Finally, as part of the study in the field of network conges-
tion control, a novel approach has been observed through the
Utility Function Algorithm (UFA). This algorithm, a variant of
the B-Neck method, has incorporated Utility Functions with
the objective of calculating the performance of the application
as a function of the type of traffic generated by the sessions
[25].The Max–Min fairness criterion has been applied by
the AFU for bandwidth allocation, demonstrating significant
effectiveness in network congestion control management. The
AFU algorithm has been evaluated in three different sce-
narios through Matlab, providing a series of performance
metrics including the allocated transmission rate, the utility
achieved per session and the fairness measured through the
Gini coefficient. The results obtained indicate that real-time
applications, particularly those transmitting voice and video,
experience better performance when using the AFU algorithm
compared to other congestion control strategies. This finding
suggests that the AFU could be particularly useful in network
environments where real-time traffic is predominant.

Importantly, this work offers promising insights for con-
gestion control in networks and marks a way forward in
the investigation of control mechanisms that can efficiently
handle the demands of different types of traffic. However,
today real-time applications demand increases, so more work
is needed to explore and refine strategies such as AFU and to
investigate how these techniques can be adapted and optimized
for different network conditions.

Research in the area of congestion control in networks has
provided a number of innovative algorithms that have informed
and enriched this evolving field. In particular, works such as B-
Neck and the Algorithm Utility Function (AFU) have proven

to be influential, providing novel and valuable insights for
the efficient management of network traffic. It is necessary to
emphasize the relevance of these fundamental works. B-Neck
and AFU have established novel criteria, compiling resource
allocation with fairness, but also based on a utility function, in
this area of research, setting a benchmark for future research
and algorithm development.

III. METHODOLOGY: CONGESTION CONTROL AND
OPTIMIZATION STRATEGY

A. Fair Max–Min Allocation Strategy

Congestion control algorithms and performance metrics are
tailored to the needs of the applications. There is no ideal
state in delay- and loss-based algorithms. It is complicated
to guarantee an equitable distribution of network capacity,
especially with different algorithms and routes, to measure
the fairness of resource allocation in networks [26].

Equation 1

Fairness =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(1)

This is the formula for the Jain equity index. In this
equation, xi represents the throughput of the i-th flow, and
n is the total number of flows.

Max–Min fairness principle seeks a fair bandwidth distribu-
tion for all applications, regardless of their criticality. Initially,
it assumes that all rates are 0 and increase at the same rate
until capacity limits are reached. This process is repeated until
the rate cannot be increased any further in one session [27].
However, despite its apparent fairness, Max–Min fairness may
not lead to optimal network utilization.

In proportional allocation, resources are distributed accord-
ing to a metric, such as user demand. This could result in
better resource utilization, but may be less fair if some users
have a high demand for resources.

It is emphasized that fairness in congestion control seeks
a fair distribution of network resources among different data
flows. This aspect is critical in the design of congestion control
mechanisms, as it contributes to the quality and perception of
a better service for users.

B. Utility functions

Customer satisfaction in the consumption of goods and
services is measured through a utility function. In the net-
work context, it reflects a combination of objectives, such
as efficiency, fairness, and quality of experience, and may
incorporate factors such as the relative importance of different
flows or sessions, so it is a measure of Quality of Service
(QoS). Two types of traffic are distinguished in this work:
best-effort traffic, which has no QoS requirements, and traffic
with QoS requirements that needs specific resources [28], [29].

Figure 1 shows utility fuctions used in this work. Elastic
applications are a subcategory of best-effort traffic. They
vary the transmission rate according to the congestion signal
and benefit from higher bandwidth. Theses applications



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 13

Fig. 1. Utility function used by D-AFU.

or services can adjust to different bandwidth levels. Their
utility function is a logarithmic function, showing that
utility increases as bandwidth increases, but at a decreasing
rate [30]. The visual representation provided in aligns
with the theoretical framework outlined by Equations 2
and 3, offering a graphical insight into the key principles
presented in this study Logarithmic form of this function
suggests that there is a decreasing benefit to increasing
bandwidth. Examples of this function are web browsing,
where increasing bandwidth improves the experience up to
a certain point, but then further increases have a minor impact.

Equation 2

Us(y) = w(log(ay + b) + d) (2)

U(y): Represents the utility, or user’s perceived satisfaction,
associated with the bandwidth y, w: A constant that scales
the entire utility function, reflecting the importance or weight
assigned to the utility, a: A parameter that influences the
rate at which utility increases with bandwidth. b: An offset
parameter that affects the baseline utility, possibly representing
a minimum utility even at low bandwidth. d: An additional
constant that could introduce an offset or baseline utility.

In this utility function the natural logarithm (log) is
commonly used to represent diminishing marginal returns,
implying that the utility increases at a decreasing rate as
bandwidth increases. The parameter a affects how quickly
the utility increases as bandwidth improves. The constant b
could represent a baseline utility even with low bandwidth.
The constant d might introduce an overall offset or baseline
utility. The increasing nature of the utility function aligns
with the description that as bandwidth increases, the user’s
perceived satisfaction or utility also increases. This type of
utility function is consistent with the idea that additional
bandwidth contributes positively to the user experience, and
the rate of increase may be subject to diminishing returns.

Consider an application such as file transfer via File Transfer
Protocol (FTP). FTP is an elastic application that is it can
vary its transmission rate depending on the amount of available
bandwidth. If bandwidth is limited, FTP can adapt by reducing
its transfer rate. However, if more bandwidth is available, FTP
can increase its transfer rate, resulting in faster file transfer.

The utility function for FTP is an increasing function, mean-
ing that as bandwidth increases, so does the user’s perceived
utility [27]. However, this function is typically logarithmic or
concave, meaning that there are diminishing returns: perceived
utility increases with bandwidth, but at a decreasing rate [31].

In contrast, inelastic traffic, which includes applications
such as audio streaming and VoIP, does not easily adapt to
changes in delay and throughput. If the allocated bandwidth
is insufficient, throughput is significantly affected [31]
because these applications or services has rigid bandwidth
requirements. Its utility function is a sigmoidal function,
showing a rapid initial increase in utility followed by a
deceleration [27]. Specifically, during the very initial phase,
the rate of increase is slower compared to an inelastic
response. In other words, the utility experiences a gradual
ascent during its early stages before entering a phase of
accelerated growth. This sigmoidal behavior is indicative of
the system’s sensitivity to changes, with a more measured
initial response that transitions into a steeper incline as the
input or conditions vary. There is a point at which additional
bandwidth increases no longer add much value (saturation).
This could represent, for example, a live video stream
where, beyond a certain point, increasing bandwidth does not
significantly improve video quality.

Equation 3

Ur(y) = w

(
1

1 + e−a(y−b)
+ d

)
(3)

In the context of congestion control and network resource
allocation, utility functions play a crucial role in evaluating the
performance and fairness of resource distribution. The utility
functions are typically used to model the satisfaction or benefit
that users derive from the allocated resources, represents the
utility associated with a particular resource allocation. The
parameters a, b, w and d are essential in shaping the character-
istics of the utility function. y: represents a variable associated
with the resource allocation, which could be, for example,
network bandwidth or throughput. Logistic Function Models
the non-linear relationship between the resource allocation and
user satisfaction. The parameters a and b control the shape of
the curve, determining how quickly user satisfaction increases
with resource allocation. w: represents a weight or importance
factor, scaling the entire utility function. It could reflect the
relative importance of user satisfaction in the overall network
management objectives. d: Represents an additional constant
that could introduce an offset or baseline utility.

C. Algorithms

Distributed control algorithms are important for architecture
design and performance engineering of the communication



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 14

network. This allow the network to scale more easily because
the work is divided among many nodes [32]. This is partic-
ularly useful in large networks where a centralized approach
can be difficult to manage and could cause bottlenecks: if one
node fails, the overall system operation does not stop. The
other nodes can continue to function independently, which
improves the resilience of the network.

Max–Min fairness principle focuses on fair resource alloca-
tion. Under this approach, all data flows start with the same
transfer rate. As demand increases, the transfer rate increases
proportionally for all flows until one of them reaches its
maximum capacity [24].At this point, the transfer rate of that
particular flow remains constant, while the other flows that
still have additional capacity can continue to increase their
transfer rate. This process is repeated until all transfer rates
have been maximized, ensuring that no flow receives less than
what would be given to any other.

The utility function describes the relationship between re-
source allocation and user satisfaction. For example, for elastic
applications, which can adjust their transfer rate as a function
of bandwidth availability, user utility or satisfaction increases
as more bandwidth is allocated to the application, but at a
decreasing rate [25].

In practice, these two concepts can be combined to develop
resource allocation algorithms that balance fairness and max-
imization of user satisfaction. One possible approach would
be to use the Max–Min fairness principle to determine an
initial resource allocation and then adjust it based on the Utility
Functions of different applications.

In one scenario, it could start by allocating bandwidth
equally among all applications. Then, it could examine the
Utility Functions and reallocate bandwidth from applications
with decreasing marginal utilities (those that derive less benefit
from additional increases in bandwidth) to applications with
increasing marginal utilities (those that derive more benefit
from additional increases in bandwidth).

By distributing decision making, each node can make ad-
justments and decisions based on local information, which
can lead to more efficient and effective resource management.
In the context of congestion control, distributed algorithms
can respond to local traffic conditions, which helps to avoid
congestion before it becomes a network-level problem [24].

Defining the part of the distributed algorithm has been taken
as a source designed by Mozo, Lopez and Fernandez [24],
where they define the following tasks according to the network
segment in question, which the authors call them tasks, each
of them is described below, the router tasks and the source
node 1 are responsible for processing the majority of messages
referring to the algorithm, while the destination node III-C
tasks are limited to receiving messages to know when a session
has joined, a test has started, or there is a message.

Router Link: Receives packets from source nodes and
forwards them to other routers. Maintains a table of the
current forwarding rates of all sessions traversing the router.
Periodically updates the forwarding rates of all sessions based
on the B-Neck algorithm. Measures the current bandwidth
available on the link. Provides this information to the routers
connecting to the link.

Algorithm 1
Task SourceNode(s, e).

procedure STARTPROBECYCLE Fe ← ∅; Re ← {s}
pending probes ← FALSE bneck rcvs ← FALSE µe

s ←
WAITING RESPONSE Send downstream Probe(s,Ds, e)
end procedure
while received API.Join(s, r) do Fe ← ∅; Re ←
{s} Ds ← min(r, Ce) pending probes ← FALSE
pending leaves ← FALSE bneck rcvs ← FALSE µe

s ←
WAITING RESPONSE Send downstream Join(s,Ds, e)

while received API.Leave(s) do
if µe

s = IDLE then Fe ← ∅; Re ← ∅ send downstream
Leave(s)

else pending leaves ← TRUE

while received Update(s) do
if µe

s = IDLE then StartProbeCycle()

while received Bottleneck(s) do
if µe

s = IDLE ∧ bneck rcvs then bneck rcvs ←
TRUE API.Rate(s, λe

s)
if Ds > λe

s then Fe ← {s}; Re ← ∅ send
downstream SetBottleneck(s,Ds = λe

s)

while received Response(s, τ, λ, η) do
if pending leaves then Fe ← ∅; Re ← ∅ send

downstream Leave(s)
else if τ = UPDATE ∨ pending probes then

StartProbeCycle()
else if τ = BOTTLENECK then λe

s ← λ µe
s ←

IDLE bneck rcvs ← TRUE API.Rate(s, λe
s)

if Ds = λe
s then bneck rcvs ← TRUE

API.Rate(s, λe
s) send downstream SetBottleneck(s,TRUE)
else send downstream

SetBottleneck(s,FALSE)

Source node: Sends packets to the router. Receives updates
from the router on the current sending rates of all sessions.
Adjusts its own sending rate based on updates from the router.

Destination Node: Receives packets from router. Delivers
packets to application. Provides feedback to router.

Algorithm 2
Task DestinationNode(s).
while received SetBottleneck(s, β) do

if ¬β then Send upstream Update(s)
end if

end while
while received Join(s, λ, η) do Send upstream Response(s,
RESPONSE, λ, η)
end while
while received Probe(s, λ, η) do Send upstream Response(s,
RESPONSE, λ, η)
end while

It should be noted that, once stable, the algorithm remains
idle until a new session occurs or resources are released.



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 15

The Algorithm Utility Function (AFU) is a sophisticated
method designed for the optimal allocation of bandwidth in
a network, with the objective of controlling network con-
gestion efficiently. AFU incorporates the Max–Min fairness
criterion, which means that it seeks to maximize the minimum
bandwidth allocation to any node in the network. The key
to AFU’s efficiency is its use of Utility Functions. These
functions quantify the ‘value’ or ‘utility’ of a given bandwidth
allocation for a particular application or type of traffic. Dif-
ferent applications and traffic types may have different Utility
Functions or depending on their bandwidth requirements, their
sensitivity to latency [26]. As can be seen the pseudocode of
the 3 algorithm proposes bandwidth allocation according to
the utility function.

Algorithm 3
Centralized AFU
e ∈ E
if e ̸= E then
Re ← S∗

e

end if

L← {e ∈ E | Re ̸= 0}
while L ̸= ∅ do e ∈ E

if e ̸= E then s ∈ e
U∗
s (y)← U [1, 0]

Bs ← 1
U∗

s (y)
·
(
Ce −

∑
s′∈Fe

λ∗
s′

)
Be ← {Bs}

end if

B ← mine∈L{Be}
L′ ← {e ∈ L | Be = B}
X ← ∪e∈L′Re s ∈ X
if s ̸= 0 then
λ∗
s ← B

end if
e ∈ L \ L′

if e ̸= 0 then
Fe ← Fe ∪ (Re ∩X)
Re ← Re \ Fe

end if

L← {e ∈ (L \ L′) | Re ̸= 0}
end while=0

Initialization: Resources are initially allocated equitably
among all users, each user is associated with a utility function
representing their satisfaction with the resource allocation.
Max-Min: Users with lower utility (or less allocation) have
the opportunity to obtain additional resources until their utility
matches that of others. Utility Function Evaluation: The utility
function for each user is evaluated based on their current
resource allocation. The shape and parameters of the utility
function determine the user’s satisfaction in relation to the al-
located resources. Iterative adjustments: The algorithm iterates
to dynamically adjust resource allocations, users with lower
utility are given priority for resource increments, promoting

fairness. Dynamic Adaptation: The algorithm dynamically
adapts to changes in network conditions, such as fluctuations
in available bandwidth or the introduction of new users.

D. Simulation settings

In the simulation, the proposed protocol is tested on various
network configurations to explore how different conditions
may affect the performance of the strategies. This includes
variations in the number of nodes, the amount of available
resources, the demand for resources. The simulated network
for this study considers two main types of traffic: Voice over
Internet Protocol (VoIP) and File Transfer Protocol (FTP).
These two types of traffic have been selected because of
their divergent characteristics and common usage in today’s
networks. VoIP traffic is real-time and latency sensitive. It re-
quires constant and relatively small bandwidth, and prioritizes
low latency over absolute data integrity. Dropped or delayed
packets can result in a noticeable degradation of call quality.
On the other hand, FTP traffic is not real-time and is less
sensitive to latency. It requires high volumes of bandwidth
and prioritizes absolute data integrity over low latency. FTP
transfers can occupy much of the available bandwidth, but can
tolerate higher latencies.

E. Metrics

The network topology in simulations can vary depending
on the number of routers to be incorporated, with several
hops for a packet to reach its destination or within a single
domain. Each router is configured to handle both VoIP and
FTP traffic, and allocates bandwidth between these services
using the Utility Function Algorithm (UFA), which applies
the Max–Min fairness criterion to control network congestion,
The topology depicted in Figure III-D is constructed using
routers and hosts connected by links with fixed bandwidth.
Hosts in this network play specific roles, serving as both
traffic senders and receivers. The fixed bandwidth of the links
establishes the capacity for data transfer between network
elements. This configuration allows for the simulation and
evaluation of network traffic scenarios, facilitating the assess-
ment of the performance and adaptability of congestion control
algorithms under controlled conditions. The role distinction
of hosts as traffic sources and destinations contributes to
a comprehensive evaluation of the algorithm’s efficiency in
handling bidirectional communication.

It has measured a number of metrics to evaluate the per-
formance of the proposed strategies and algorithms. These
include resource allocation fairness, resource usage efficiency,
delay and packet loss. These metrics allow to quantify and
compare the results in an objective manner.

In our experiment within a consistent network topology, we
aimed to validate the effectiveness of a congestion control
algorithm by diversifying traffic types and routing. Deploying
distinct traffic categories, including voice, video, data, and
routing them through various paths allowed us to assess the
algorithm’s adaptability and performance under diverse con-
ditions. By measuring key parameters such as latency, packet
loss, and bandwidth utilization, we gained insights into the



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 16

Fig. 2. Network topology used in simulations.

algorithm’s responsiveness and efficiency. The experiment’s
findings provide valuable confirmation of the algorithm’s
validity, demonstrating its ability to handle varied network
scenarios and optimize resource allocation based on the nature
of the transmitted data.

F. Lost packages and queues

Packet loss refers to the number or percentage of packets
that are sent from a source but do not reach their intended
destination. This loss can be due to errors in network devices,
congestion and collisions. Packet loss can have a significant
impact on real-time applications, such as VoIP or online
gaming, while network queuing refers to the temporary ac-
cumulation of packets at a network point, such as a router
or switch, before they are processed or forwarded. Metrics
related to queues can include queue length (number of packets
in queue), queue delay (time a packet waits in queue) and
discard due to full queues [33].

G. End-to-end packet delay

End-to-end packet delay, commonly referred to as latency,
refers to the time it takes for a data packet to travel from a
source to a destination over a network [34]. This delay can
be caused by a variety of factors, including propagation time,
transmission time, processing speed of intermediate devices,
and queuing time on network devices. It is important to note
that on larger or more congested networks latency can vary
considerably. Latency variability is known as ‘jitter’ and can
be problematic for time-sensitive applications.

The RTT is a crucial metric in networking that quantifies
the time required for a data packet to traverse from the
sender to the receiver and then return to the sender. RTT is
a fundamental parameter in assessing the responsiveness and
efficiency of network communication. It directly influences the
perceived delay in data transmission, making it a significant
consideration for real-time applications, such as video confer-
encing and online gaming

H. Fairness in resource distribution

Gini coefficient in the context of congestion control is a
measure that quantifies the unequal allocation of resources in
a network. Its value varies between 0 and 1, where 0 represents
a completely equal distribution of resources and a completely
unequal allocation [35]. The Lorenz curve, which plots the
distribution of resources in the network, shows the cumulative
proportion of bandwidth allocated in relation to the cumulative
proportion of sessions or flows in the network [36].

IV. RESULTS

All experiments have been performed in the NS3 network
simulator. It is a discrete event simulator that is widely
used in network research to model the behavior of computer
networks [37]. This simulator has allowed to accurately and
controlled recreate the requiered network conditions, and has
provided a platform for D-AFU implementing and testing.

In this work, we proposed a novel congestion control
algorithm with the aim of enhancing network performance in
specific scenarios. To assess the effectiveness and efficiency



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 17

of our algorithm, we conducted a comprehensive comparison
with TCP Reno, a widely recognized and utilized congestion
control algorithm in networking environments.

TCP Reno has stood out as one of the most commonly
implemented and studied congestion control algorithms in the
networking community. Its approach of slow start, congestion
avoidance, and fast recovery has served as a foundational
framework for numerous developments in this field.

Throughout our testing and comparative analyses, we as-
sessed the performance of our algorithm across diverse scenar-
ios, taking into account factors such as bandwidth utilization
efficiency, adaptability to network changes, and tolerance to
packet loss. The comparison with TCP Reno provides a robust
benchmark for understanding how our algorithm fares in
relation to a well-established standard within the congestion
control domain.

1) Lost packages and queues: From the results of a simula-
tion of the network topology, where it plots the packets
in the queue on the interface according to the flows
sent, a larger queue is an indicator of congestion and
packet loss occurs due to the timers in the applications.
Figure 3 shows D-AFU keeps short queue all-time. It can
be concluded by applying D-AFU, the queue decreases
substantially, there is no packet loss and no packet
retransmissions.
The absence of lost packets implies that all packets sent
by the sources reach their intended destinations, which
in turn may indicate that the network congestion control
system is effectively functioning to prevent network
saturation.

Fig. 3. Queues in intermediate nodes.

2) Data rates for each session: The results of the simulation
applying elastic and inelastic traffic (real time) can be
seen in the Figure 4. It shows that when applying D-
AFU the values that the application needs are reached in
a shorter time than the same resources obtained without
applying the algorithm. In the elastic traffic instead
it adapts to the available resources, which is directly

TABLE II
COMPARATIVE METRICS FOR THE NETWORK.

Strategy Pkt. Send Pkt. Recv Avg. RTT (ms) Freq. (sec)
D-AFU 300 300 61.5 0.3

Without D-AFU 300 250 718.6 0.3

related to the size of the queue. Vertical lines have been
traced where alert a change made in the traffic. The ap-
plication in real time obtains the bandwidth requirement
in a shorter time than without the algorithm strategy. For
the elastic traffic instead when sharing resources on a
link this adjusts its bandwidth requirement based on the
availability of: first the type of application with which it
shares and second with the total bandwidth available,
which can be noted from time six in the graph and
at time 8 they manage to adjust a fair distribution of
resources.

Fig. 4. Data rates for different traffic.

In addition, to analyze the effectiveness of congestion
control, performance parameters were obtained using the
D-AFU approach and a traditional method without D-
AFU. The results presented in the Table II indicate a
clear superiority of the D-AFU approach in terms of
packets received. Both methods sent the same number
of packets (300 packets in 10 seconds). The D-AFU
method managed to deliver all packets successfully,
while the non-D-AFU method delivered only 250 of
the 300 packets. That noted, while the results of this
particular simulation are positive, it is important to
remember that simulations are simplifications of the
real world and their results are dependent on user-
specified conditions. In addition, having zero dropped
and lost packets does not necessarily mean that the
network is perfect. Other factors, such as latency or
jitter, could still affect network quality. In Table II it can
see the average RTT values. With D-AFU the lattency
is slower that without D-AFU because, it proves to be
almost ten times faster than the non-D-AFU method.



ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 18

These results suggest that D-AFU congestion control
is more efficient in saturated environments, providing
better quality of service and faster response times. It
improves the network performance.

3) Fair distribution of resources
Figure 5 plots Gini coefficient and Lorenz curve for
the allocation data rate in the network. For D-AFU
algorithm Gini coefficient is 0.52 while without applying
the proposed algorithm is 0.81. This means that D-
AFU, considering the utility function, makes a more fair
distribution of network resources.

Fig. 5. Fairness measure.

V. CONCLUSIONS

Distributed Utility Function Algorithm (D-UFA) is an al-
gorithm that achieves Max–Min fairness. This implies that it
ensures that all sessions receive a fair share of the network
bandwidth, a factor especially relevant in contexts with sig-
nificant variations in traffic types, for example VoIP and FTP
applications. It is a distributed algorithm, meaning that it does
not require any central coordination. This allows D-AFU to
efficiently adapt to network variations and respond locally to
congestion. It is efficient and scalable, which means that it can
be used in large networks. It is a quiescent algorithm because
it stops generating traffic once it has converged to optimal
sending rates. This is an important feature to avoid adding
additional congestion to the network once the optimal state is
reached. The results show D-AFU is a promising approach for
network congestion control.

VI. REFERENCES
REFERENCES

[1] Cisco, “Cisco Annual Internet Report (2018–2023),” 2020. [Online].
Available: https://www.cisco.com/c/dam/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.
docx/ jcr content/renditions/white-paper-c11-741490 0.png

[2] J. F. Kurose and K. W. Ross, Computer Networking: A Top-down
Approach. Pearson, 2017. [Online]. Available: https://books.google.
com.ec/books?id=OljpOAAACAAJ

[3] W. R. Stevens and G. R. Wright, TCP/IP Illustrated: The Protocols,
ser. Addison-Wesley professional computing series. Addison-
Wesley, 1994. [Online]. Available: https://books.google.com.ec/books?
id=-btNds68w84C

[4] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities,” in Proceedings - 10th IEEE International Con-
ference on High Performance Computing and Communications, HPCC
2008. IEEE, 2008, pp. 5–13.

[5] P. Ludeña, “Fairness and Proactive Congestion Control in Multipath
Networks,” Ph.D. dissertation, Universidad Politécnica de Madrid, 2021.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP
(DCTCP),” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 63–
74, 2010. [Online]. Available: https://doi.org/10.1145/1851275.1851192

[7] K. R. Fall and S. Floyd, “Simulation-Based Comparisons of Tahoe,
Reno and SACK TCP,” Comput. Commun. Rev., vol. 26, pp. 5–21, 1996.
[Online]. Available: https://api.semanticscholar.org/CorpusID:7459148

[8] P. Ludeña-González, J. L. López-Presa, and F. D. Muñoz, “Upward Max-
Min Fairness in Multipath High-Speed Networks,” IEEE Access, 2021.

[9] N. Li, Z. Deng, Q. Zhu, and Q. Du, “AdaBoost-TCP: A Machine
Learning-Based Congestion Control Method for Satellite Networks,” in
2019 IEEE 19th International Conference on Communication Technol-
ogy (ICCT), 2019, pp. 1126–1129.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004. [Online]. Available: https://books.google.com.
ec/books?id=IUZdAAAAQBAJ&printsec=frontcover&hl=es&source=
gbs ge summary r&cad=0#v=onepage&q&f=false

[11] M. Bahnasy, H. Elbiaze, and B. Boughzala, “Zero-Queue Ethernet
Congestion Control Protocol Based on Available Bandwidth Estimation,”
Journal of Network and Computer Applications, vol. 105, pp. 1–20,
2018.

[12] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys and Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.

[13] S. Varma, Internet Congestion Control. Elsevier Science,
2015. [Online]. Available: https://books.google.com.ec/books?
id=gbPoBgAAQBAJ&printsec=frontcover&hl=es&source=gbs ge
summary r&cad=0#v=onepage&q&f=false

[14] S. Hu, W. Bai, B. Qiao, K. Chen, and K. Tan, “Augmenting Proactive
Congestion Control with AEOLUs,” in ACM International Conference
Proceeding Series, 2018, pp. 22–28.

[15] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2.
Springer US, 2009.

[16] D. Giannopoulos, N. Chrysos, E. Mageiropoulos, G. Vardas,
L. Tzanakis, and M. Katevenis, “Accurate Congestion Control for
RDMA Transfers,” 2018 Twelfth IEEE/ACM International Symposium
on Networks-on-Chip (NOCS), pp. 1–8, 2018.

[17] M. Bahnasy and H. Elbiaze, “Fair Congestion Control Protocol for Data
Center Bridging,” IEEE Systems Journal, vol. 13, no. 4, pp. 4134–4145,
2019.

[18] I. Cho, K. Jang, and D. Han, “Credit-Scheduled Delay-bounded Con-
gestion Control for Datacenters,” in SIGCOMM 2017 - Proceedings
of the 2017 Conference of the ACM Special Interest Group on Data
Communication, 2017, pp. 239–252.

[19] M. R. Kanagarathinam, S. Singh, I. Sandeep, A. Roy, and N. Saxena, “D-
TCP: Dynamic TCP Congestion Control Algorithm for Next Generation
Mobile Networks,” in 2018 15th IEEE Annual Consumer Communica-
tions & Networking Conference (CCNC), 2018, pp. 1–6.

[20] T. M. Mitchell, Machine Learning, ser. McGraw-Hill International
Editions. McGraw-Hill, 1997.

[21] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting,” Journal of
Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S002200009791504X

[22] C. D. Maciel and C. M. Ritter, “TCP/IP Networking in Process Control
Plants,” Computers & Industrial Engineering, vol. 35, no. 3, pp. 611–
614, 1998. [Online]. Available: https://doi.org/10.1016/S0360-8352(98)
00171-5

[23] C. Caini and R. Firrincieli, “TCP Hybla: A TCP Enhancement for
Heterogeneous Networks,” International Journal of Satellite Commu-
nications and Networking, vol. 22, no. 5, pp. 547–566, 2004.

[24] A. Mozo, J. L. López-Presa, and A. Fernández Anta, “A distributed and
Quiescent Max-Min Fair Algorithm for Network Congestion Control,”
Expert Systems with Applications, vol. 91, pp. 492–512, 2018.

https://www.cisco.com/c/dam/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.docx/_jcr_content/renditions/white-paper-c11-741490_0.png
https://www.cisco.com/c/dam/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.docx/_jcr_content/renditions/white-paper-c11-741490_0.png
https://www.cisco.com/c/dam/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.docx/_jcr_content/renditions/white-paper-c11-741490_0.png
https://books.google.com.ec/books?id=OljpOAAACAAJ
https://books.google.com.ec/books?id=OljpOAAACAAJ
https://books.google.com.ec/books?id=-btNds68w84C
https://books.google.com.ec/books?id=-btNds68w84C
https://doi.org/10.1145/1851275.1851192
https://api.semanticscholar.org/CorpusID:7459148
https://books.google.com.ec/books?id=IUZdAAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com.ec/books?id=IUZdAAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com.ec/books?id=IUZdAAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com.ec/books?id=gbPoBgAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com.ec/books?id=gbPoBgAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com.ec/books?id=gbPoBgAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.1016/S0360-8352(98)00171-5
https://doi.org/10.1016/S0360-8352(98)00171-5


ENFOQUE UTE, VOL. 15, NO. 2, APRIL 2024. PP. 9-19, E-ISSN: 1390-6542 19

[25] J. R. Carrion Torres, “Aplicabilidad de Funciones de Utilidad Para el
Control de Congestión en Redes de Computadores,” Master’s thesis,
Universidad Técnica Particular de Loja, Loja, 2020.

[26] R. Al-Saadi, G. Armitage, J. But, and P. Branch, “A Survey of Delay-
Based and Hybrid TCP Congestion Control Algorithms,” IEEE Commu-
nications Surveys and Tutorials, vol. 21, no. 4, pp. 3609–3638, 2019.

[27] M. Welzl, Network Congestion Control: Managing Internet Traffic. J.
Wiley, 2005.

[28] J. Jin, W.-H. Wang, and M. Palaniswami, “Utility Max–Min Fair
Resource Allocation for Communication Networks with Multipath
Routing,” Computer Communications, vol. 32, no. 17, pp. 1802–1809,
2009. [Online]. Available: https://doi.org/10.1016/j.comcom.2009.06.
014

[29] L. Chen, B. Wang, X. Chen, X. Zhang, and D. Yang, Utility-Based
Resource Allocation for Mixed Traffic in Wireless Networks. Institute
of Electrical and Electronics Engineers, 2011.

[30] S. Li, Y. Zhang, Y. Wang, and W. Sun, “Utility Optimization-Based
Bandwidth Allocation for Elastic and Inelastic Services in Peer-to-Peer
Networks,” International Journal of Applied Mathematics and Computer
Science, vol. 29, no. 1, pp. 111–123, 2019.

[31] Q. V. Pham and W. J. Hwang, “Network Utility Maximization-Based
Congestion Control over Wireless Networks: A Survey and Potential
Directives,” IEEE Communications Surveys and Tutorials, vol. 19, no. 2,
pp. 1173–1200, 2017.

[32] M. Chiang, “Distributed Network Control Through Sum Product Al-
gorithm on Graphs,” in Global Telecommunications Conference, 2002.
GLOBECOM ’02. IEEE, vol. 3, 2002, pp. 2395–2399 vol.3.

[33] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed.
Prentice Hall, 2011.

[34] C. Demichelis and P. Chimento. (2002) IP Packet Delay Variation Metric
for IP Performance Metrics (IPPM). Network Working Group, RFC
3393.

[35] C. Gini, Variabilità e mutabilità, 1912, vol. 5, no. 20.
[36] M. O. Lorenz, “Methods of Measuring the Concentration of Wealth,”

Publications of the American Statistical Association, vol. 9, no. 70, pp.
209–219, 1905.

[37] G. F. Riley and T. R. Henderson, “The NS-3 Network Simulator.” in
Modeling and Tools for Network Simulation, K. Wehrle, M. Günes,
and J. Gross, Eds. Springer, 2010, pp. 15–34. [Online]. Available:
http://dblp.uni-trier.de/db/books/collections/Wehrle2010.html#RileyH10

https://doi.org/10.1016/j.comcom.2009.06.014
https://doi.org/10.1016/j.comcom.2009.06.014
http://dblp.uni-trier.de/db/books/collections/Wehrle2010.html#RileyH10

	Introduction
	State of the Art
	Methodology: Congestion Control and Optimization strategy
	Fair Max–Min Allocation Strategy
	Utility functions
	Algorithms
	Simulation settings
	Metrics
	Lost packages and queues
	End-to-end packet delay
	Fairness in resource distribution

	Results
	Conclusions
	REFERENCES
	References

