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Fault detection in axial piston hydraulic pumps: 
integrating principal component analysis with 

silhouette-based cluster evaluation
Fabian H. Diaz Palencia1, Carlos Borrás2, Cecilia E. García Cena3

Abstract —This paper presents an approach integrating princi-
pal component and silhouette analysis with clustering algorithms 
for fault detection in hydraulic systems. The methodology was va-
lidated through a study in which vibration and pressure signals 
were collected under normal and fault conditions. These signals 
were then processed through filtering and normalization, followed 
by dimensionality reduction using principal component analysis. 
The resulting lower-dimensional feature vectors retained the criti-
cal characteristics of both normal and faulty conditions and were 
subsequently fed into a clustering algorithm. The quality of the 
resulting clusters was evaluated using silhouette analysis, which 
offers a reliable means of assessing cluster quality and visualising 
the outcomes of fault classification. The study demonstrates the 
effectiveness of this method in accurately representing the pat-
terns of normal and malfunctioning hydraulic pump conditions, 
ultimately leading to successful diagnostic results.1

Keywords: Principal Component Analysis; Silhouette Analysis; 
Failure Detection; hydraulic piston pump. pp. 1-9

Resumen — Este artículo presenta un enfoque que integra el 
análisis de componentes principales y el análisis de siluetas con al-
goritmos de agrupamiento para la detección de fallos en sistemas 
hidráulicos. La metodología se validó a través de un estudio en el 
que se recopilaron señales de vibración y presión en condiciones 
normales y de fallo. Estas señales fueron procesadas mediante fil-
trado y normalización, seguidos de una reducción de la dimensio-
nalidad con el análisis de componentes principales. Los vectores 
de características de menor dimensión resultantes conservaron las 
características críticas tanto de las condiciones normales como de 
las defectuosas y posteriormente se introdujeron en un algoritmo de 
agrupación. La calidad de los conglomerados resultantes se evaluó 
con el análisis de siluetas, que ofrece un método fiable para evaluar 
la calidad de los conglomerados y visualizar los resultados de la cla-
sificación de fallos. El estudio demuestra la eficacia de este método a 
la hora de representar con precisión los patrones de las condiciones 
normales y defectuosas de las bombas hidráulicas, lo que en última 
instancia conduce a resultados de diagnóstico satisfactorios.

Palabras clave: Análisis de Componentes Principales; Análisis 
de Silueta; Detección de fallas; Bomba Hidráulica de Pistones.
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I. INTRODUCTION

FAULT monitoring and diagnosis in dynamic systems is a 
key challenge in industrial engineering, particularly in the 

analysis of sensor data. The axial piston hydraulic pump is a 
critical component within hydrostatic systems [1]; it is used 
as equipment to transmit power in various applications, and 
its good performance depends on the success and efficiency of 
the operations in which it is involved within industrial proces-
ses. For this reason, companies invest significant efforts and 
capital in maintenance issues to take advantage of or prolong 
to the maximum its operation; early detection of failures in the 
components that integrate it has been a constant research task 
in recent years. This task consists of determining the type of 
failure, and for this purpose, it is possible to distinguish three 
main approaches [2] [3] [4].

•  Diagnostic systems for hydraulic systems based on the 
developed model of the diagnosed system.

•  Diagnostic systems for hydraulic systems based on sig-
nal analysis.

•  Diagnostic systems for hydraulic systems based on 
knowledge or so-called intelligent fault identification.

Fault detection using knowledge-based methods is a heu-
ristic process. System characteristic values are used to extract 
features under normal and erratic conditions; once the featu-
res are extracted under both conditions, they are compared 
and the change detection methods are applied. Artificial neu-
ral networks, fuzzy logic, principal component analysis and 
neuro-fuzzy methods can be considered knowledge-based [5]. 
This paper focuses on applying Principal Component Analy-
sis (PCA) for anomaly and fault detection in time series data, 
followed by a detailed analysis using t2. In addition, silhouette 
plot analysis is included to assess the quality of the clusters 
generated from the PCA scores. The aim is to provide a robust 
methodology for detecting system failures from vibration data 
or other sensor measurements.

II. BACKGROUND

Several methods have been employed for fault detection and 
diagnosis in hydraulic systems. Table I compares various te-
chniques used for this purpose. Each process is described in 
terms of its basic functionality, specific applications in the con-
text of hydraulic systems, key advantages, and inherent limita-
tions. On the opposing side., Table II shows some techniques 
for detection or diagnosis. of faults in hydraulic systems based 
on the methods previously described.
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A. Principal Components Analysis  
as a Methodology for Fault Detection

The Principal Components Analysis (PCA) method, introdu-
ced by Pearson in 1901 and Hoteling in 1933, is a statistical tool 
designed to reduce the dimensionality of a dataset containing 
multiple interrelated variables while preserving as much variation 
as possible. This is achieved by transforming the original varia-
bles into a new set of uncorrelated variables known as principal 
components. These components are ordered, with the first retai-
ning most of the variation present in the original variables [6].

PCA has proven to be a powerful tool for detecting faults 
in complex systems, especially in industrial processes and 
machinery. PCA is well-suited for identifying anomalies in 
high-dimensional datasets. By projecting new data onto the 
lower-dimensional space defined by the principal components, 
deviations from normal operation patterns can be readily iden-
tified. This approach allows for the timely detection of subt-
le changes in system behavior that may indicate the onset of 
faults. The ability of PCA to handle large datasets, reduce 
noise, and provide interpretable results has led to its increa-
sing popularity for fault detection (see Fig. 1) across various 
industries, including manufacturing, chemical processing, and 
mechanical systems.

Data set

Filtering and
normalizing

Determine the
number of
principal

components

Analize new data set

Exceed the
threshold

System fault

Determine
the contribution

of variables

Calculate 
eigenvectors

an eiggenvalues

Fig. 1. Typical diagnostic methodology by PCA.

The article [7] mentions that PCA applications in multiva-
riate process failure diagnosis started in the 1990s, and to date, 
it is still implemented in conjunction with other techniques or 
methodologies. The idea is to use sensor data and/or variables 
that describe the operation of devices, processes, or systems 
and apply PCA to identify the main components that explain 
the most significant amount of variability in the data to identify 
patterns or relationships that may indicate the presence of a 
fault or erratic operation.

L. Siyuan et al., in [8] show a study on the application of PCA 
for fault detection in Hydraulic Pumps, and in [9] combines 

Rough Set (RS) and PCA to diagnose faults based on the energy 
characteristics of Vibration signals also in hydraulic pumps.

M. Atoui et al., in [10] apply Bayesian Networks (BN) and 
PCA, BN and 4381 T2-SPE for fault detection, validating both 
methodologies using the Tennessee Eastman Process, showing 
that both methods produce the same performance at the time of 
fault detection.

Villegas et al. in [11] describe the PCA application for fault 
detection and diagnosis in a real plant. The approach inclu-
des a PCA model for each system behavior, i.e., models under 
normal and fault conditions. It demonstrates that detecting and 
identifying level sensor failures and clogging in a two-com-
municating tank system is possible. The paper [29] presents a 
multimode process monitoring technique that integrates den-
sity peak clustering and kernel principal component analysis 
with a multi-strategy zebra optimization algorithm. The pro-
posed method enhances mode identification accuracy and fault 
detection capabilities in dynamic industrial processes. Experi-
mental validation demonstrates the method’s superiority over 
traditional techniques, achieving high fault detection rates and 
low false alarm rates across various scenarios, particularly in 
identifying transition modes.

The study presented in [12] introduces an innovative ap-
proach for diagnosing faults in grid-connected photovoltaic 
systems by combining feature extraction techniques like the 
Salp Swarm Algorithm with supervised machine learning clas-
sifiers. The model’s performance is compared against traditio-
nal methods such as PCA and Kernel PCA. The findings de-
monstrate that the model achieves a diagnostic accuracy of over 
99 % and greatly enhances computational efficiency compared 
to PCA and KPCA. This improvement is particularly notable 
for fault classification in nonlinear systems where PCA and 
KPCA are less effective.

The research detailed in [13] is centered on creating a 
fault diagnosis and location system for nuclear plant equip-
ment. It utilizes PCA to reduce the dimensionality of sensor 
data from 70 to 21 dimensions, resulting in improved classi-
fication accuracy during the training of a Residual Network, 
with a peak accuracy of 98.59 %. In a study referenced as 
[20], Diaz used PCA for detecting failures related to loss of 
volumetric efficiency and applied SVM to classify the se-
verity of failure in an axial piston pump. The study yielded 
results close to 99 %.

Zhao et al. [14] propose a new fault diagnosis method based 
on PCA. First, they transform the vibration signal to the fre-
quency domain. Then, they use the PCA method to reduce the 
dimension of the feature matrix. Finally, the reduced feature 
vector is fed into another model to diagnose faults in a rotating 
machinery bench.

Cárdenas et al. [15] developed a PCA-based approach to 
detect and categorize faults in a natural gas engine. Their 
algorithm analyzed alarm bursts to distinguish normal sys-
tem behavior from failures. The results they obtained were 
quite promising and outperformed the existing methods used  
by operators.
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TABLE I 
METHODOLOGIES FOR FAULT DETECTION

Methodology Description Application in Hydraulic Systems Advantages Limitations

Support Vector 
Machines

Classification technique that finds the 
best margin of separation between 

classes in a high-dimensional space.

Classification of system status as  
“normal” or “anomalous” based on 

sensor data characteristics.

Effective in handling  
non-linear data; high classification 

accuracy.

May be sensitive to kernel 
choice; may not scale well 

with large data sets.

Artificial Neural 
Networks

Computational models inspired  
by the human brain consist of layers 

of nodes (neurons).

Modeling complex and nonlinear  
relationships between variables to pre-
dict failures based on historical data.

Ability to learn complex relation-
ships; adaptability to different 

types of data.

Require large amounts of data 
for training; risk of overfitting.

Convolutional 
Neural Networks

Deep neural networks are designed to 
process structured data in the  

form of images.

Analysis of sensor data or thermal  
image patterns to identify features  

that indicate faults.

Efficient in feature extraction; 
suitable for high-dimensional data.

They require high computatio-
nal power and training time; 

they require labeled data.

Recurrent Neural 
Networks

Networks are designed to handle 
sequential data and capture  

temporal dependencies.

Time series analysis of sensor data to 
detect failure patterns over time.

Capture temporal dependencies; 
effective for sequential data.

Complexity in training;  
risk of long-duration gradients 

and fading.

Decision Trees and 
Random Forests

Prediction models that divide data 
into nodes based on binary questions 

combine multiple trees.

Classification and prediction of failures, 
combining the output of several trees  

for more robust decisions.

Easy to interpret; good accuracy; 
reduce the risk of overfitting.

They can be prone  
to overfitting without proper 
adjustment; they may require  

a lot of training time.

Clustering 
Algorithms

Group data based on similarities  
and patterns.

Identification of patterns and anomalies 
in sensor data that may indicate faults.

No predefined labels are required; 
suitable for detecting  

unknown patterns

Sensitive to the number  
of clusters; may not handle 

noisy data well.

Principal  
Component 

Analysis

Dimensionality reduction technique 
that transforms data to a new space.

Reduced data complexity to improve 
the efficiency of other fault detection 

algorithms.

Simplifies complex data; facilita-
tes visualization of patterns.

May lose relevant information; 
not always suitable for  

non-linear data.

Model-Based 
Methods

They use mathematical models of the 
system to predict expected behavior 

and detect anomalies.

Comparison of actual data with the 
mathematical model to detect deviations 

that indicate failures.

Accuracy in anomaly detection 
based on a detailed understanding  

of the system.

It requires accurate and 
detailed models, but it can be 

complex to implement.

Expert and Rule-
Based Systems

They use predefined rules and expert 
knowledge to make decisions and 

diagnose failures.

Fault diagnosis is achieved by applying 
specific rules and heuristics that reflect  

expert knowledge.

Apply domain-specific  
knowledge; easy to interpret.

Limited by predefined 
knowledge; cannot adapt  
to new situations easily.

Anomaly Detection 
Methods

They focus on identifying  
significant deviations from normal 

system behavior.

Using statistical and machine learning 
techniques, identifying anomalous  

behaviors that could indicate failures.

Effective in detecting unexpected 
behavior; can be adapted to  

different data types.

May generate false positives; 
require good definition  

of what constitutes  
an anomaly.

TABLE II 
FAULT DETECTION METHODS AND THEIR CONTRIBUTIONS IN HYDRAULIC SYSTEMS

Article Fault Type Analysis Method Problems Encountered Contribution

[16]
Fault in the control valve,  
displacement regulation  

mechanism, and rotating group.

Kalman Filter with Unknown Input 
and Residual Evaluation Based on 

cumulative sum.

Complexity in estimating the  
swashplate moment and sensitivity  

to operating conditions.

Improves fault detection sensitivity and 
speed by considering uncertainties in the 

swashplate.

[17] Wear of the valve plate.
Vibration signal analysis using  
wavelet analysis and Artificial 

Neural Networks.

No specific problems were mentioned, 
but spectral analysis and feature selection 

techniques is emphasized.

Develops a methodology to detect and clas-
sify wear faults in valve plates, facilitating 

condition-based maintenance.

[18] Weak faults in  
hydraulic pumps.

Vibration signal fusion using Enhan-
ced Empirical Wavelet Transform 
and Variance Contribution Rate.

Inadequate segmentation of  
the spectrum in the Empirical  

Wavelet Transform.

Introduces an improved method to achieve 
more accurate spectrum segmentation,  

enhancing weak fault detection.

[19]
Failures in positive displacement 

pumps, specifically in  
three-screw spindle pumps.

Extended Kalman Filter for  
the estimation of non-measurable 

signal data.

Difficulty in obtaining accurate mathemati-
cal models and the inability to use conven-

tional sensors due to fluid turbulence.

Development and implementation of a  
prototype that improves accuracy and  
reliability in fault detection, providing  

a solution without the need for  
traditional sensors.

[20]
Abrasive wear in components  

of a positive displacement  
multi-piston pump.

K-Nearest Neighbor classifier  
based on vibration signals, static 

and dynamic pressure, and working 
medium flow rate.

Formation of elliptical depressions  
on the cam plate and microchannels in the 

valve plate due to the loss  
of the lubricating layer.

Demonstrates that a basic classifier  
like K-Nearest Neighbor can achieve high 

accuracy in detecting wear conditions.
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[21] Wear of the valve plate in a 
swash-plate axial piston pump.

Causation-based Linear Interpola-
tion and Wavelet-based Adaptive 
Signal Analysis of Instantaneous  

Angular Speed Fluctuation 
waveform.

Interference of sensors position, periodic 
noise disturbances from bearings, shafts, 

and other rotating components.

Application of the Instantaneous Angular 
Speed signal for fault diagnosis of a swash-
plate axial piston pump, for detecting wear 
faults in the valve plate. This approach is 
validated through experimental results.

[22] Wear conditions and  
cavitation phenomena.

Support vector machines, extreme 
learning machines, deep belief  

networks and the minimum  
redundancy maximum relevance 

algorithm for feature ranking.

The limitation of conducting diagnostics 
under stationary operating conditions  

may not fully represent the operational 
realities of hydraulic systems.

Development of a neural classifier for pump 
wear state classification with high accuracy 
rates for pressure signals and the applica-
tion of deep machine learning techniques 
to effectively detect and classify multiple 

faults in hydraulic systems.

[23]

The fault type analyzed is the 
detection of PDM (Positive  
Displacement Motor) stalls  

during coiled tubing operations.

Fuzzy Logic Inference System (FIS) 
that monitors surface parameters and 

detects motor stalling using  
data from coiled tubing unit  

surface sensors.

The limitation of a relatively small dataset 
available for development, which contains 
data from only 4 milling operations, and 

the reliance on human interaction with the 
equipment that is not recorded in the data.

The main contribution of the research is  
the development of a Fuzzy Logic Inference 

System that supervises surface data,  
recognizes abnormal situations, and  

informs the user to help avoid human-indu-
ced errors during coiled tubing operations.

[27]
Slight cylinder faults and  

severe cylinder faults in axial 
piston pumps.

The physics informed neural  
network framework is used for 
predicting pump flow ripple, 

which serves as a clear indicator of 
pump health. The study utilized a 
calibrated pipeline model to obtain 

simulated pressure ripples.

The time-consuming and expensive nature 
of solving the inverse problem, poor initial 

and partial boundary conditions.

Their framework has been validated 
through numerical and experimental 

studies, demonstrating high accuracy in 
predicting flow ripples and identifying fault 

characteristics, thus enhancing fault  
diagnosis in hydraulic systems.

[28]
Axial piston pump faults,  

including slipper wear, loose 
boot, and valve plate wear. 

Domain adversarial transfer fault 
diagnosis method based on  

multi-scale attention mechanisms.

Insufficient feature extraction  
and domain adaptation capability in cross-
situation and partially unlabeled samples.

The proposed method effectively improves 
fault diagnosis accuracy and provides new 
ideas for further research on axial piston 

pump fault diagnosis.

III. METHODOLOGY

To develop this work, a test bench (see Fig. 2) equipped 
with a Siemens 40 [HP] 1200 rpm electric motor and an Ea-
ton 54 series axial piston pump was used to induce the failure 
conditions (see Fig. 3). The load was generated by means of a 
manifold consisting of two crossed relief valves, with which it 
was possible to maintain the same load conditions during the 
experiment (see Fig. 4).

Fig. 2. Test bench

Fig. 3. Positions taken for vibration measurement.

Two datasets were collected, one for normal and another for 
fault conditions test data are also separated to perform failure 
predictions under unknown conditions. At a pre-established 
load of 700 psi, maintaining the measurement variables such 
as operating regime, external noises, and hydraulic oil tem-
perature in a constant range. To perform the proposed study, 
we proceeded to capture signals of preload pressure, discharge 
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pressure, and mechanical vibrations in four points at the pump, 
in fault and non-fault conditions must be gathered (Table III).

Fig. 4. Experiment’s schematic.

Instrumentation and sensors:
•  WIKA pressure transducer model ECO-1 to measure 

discharge pressure.
•  Diagnostic systems for hydraulic systems based on sig-

nal analysis.
•  Diagnostic systems for hydraulic systems based on 

knowledge or so-called intelligent fault identification.
•  NI USB-6215 card
•  NI USB-9234 card 
•  Laptop for data analysis.

TABLE III 
PROCESS DATA CORRESPONDING TO NORMAL  

AND FAULT OPERATING CONDITIONS

Case Vib 1 Vib 2 Vib 3 Vib 4
Precharge 
pressure 

Volt

Discharge 
pressure 

Volt

1 X11 X12 X13 X14 X15 X16

2 X21 X22 X23 X24 X25 X26

- - - - - - -

- - - - - - -

- - - - - - -

n Xn1 Xn2 Xn3 Xn4 Xn5 Xn6

The experiment uses the components mentioned above and 
LabVIEW software for signal acquisition. The sampling frequen-
cy was 100 kHz for pressure data and 50 kHz for vibration data. 
Intentionally wearing out the valve plate induces one kind of fault 
condition: loss of volumetric efficiency. The data set includes 
data obtained when the pump worked in both fault and normal 
conditions and comprises 216 observations from the six variables. 

The Fast Fourier Transform (FFT) was applied to time se-
ries data to explore signals’ spectral characteristics. The FFT 
decomposes vibration signals into their frequency components, 

enabling visualization of how fault conditions alter the data’s 
spectral characteristics. The amplitude spectrum is calculated 
for each signal of each variable (sensor), highlighting frequen-
cy differences between normal and fault conditions.

In the Fig. 5. we can see the difference in the vibration spec-
trum in fault and not fault for the four accelerometer positions.

Fig. 5. Vibration Spectrum for normal and fault condition.

A. Principal Component Analysis (PCA)
PCA reduces data dimensionality and extracts the primary 

characteristics describing data variations. The technique pro-
jects data into a lower-dimensional space while preserving 
maximum variance [24]. Given a set of observations associated 
either with control, monitoring or simply as indicators of the 
process, new variables called principal components are cons-
tructed such that considering a data matrix  (Eq. 1):

 (1)

It is convenient to normalise the data for each variable so 
that all the variables have the same weight in the computation. 
Then from this matrix, the covariance matrix can be calculated 
as follows (Eq. 2): 

 (2)

Performing singular value decomposition (SVD) (Eq. 3):

 (3)

Where  is a diagonal matrix with the eigenvalues of S 
sorted in descending order , the 
columns of the matrix V are the eigenvectors of S. The trans-
formation matrix  is generated by choosing the 
eigenvectors or columns V corresponding to the eigenvalues. 
For each dataset (normal and fault), the number of principal 
components necessary to explain at least 90 % of the variance 
is selected by the percentage of variability explained criterion, 
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where the number of principal components a is taken so that 
Pa is close to a user-specified value [25], and the new dataset of 
smaller dimensions than the original is given by Eq. 4:

 (4)

Now, the original dataset can be represented in terms of its 
eigenvectors, which define the direction of the principal com-
ponents (Eq. 5):

 (5)

The difference between the original dataset and the transfor-
med dataset is the residue matrix (Eq. 6):

 (6)

B. Statistics for monitoring with PCA

•  Hotelling (T2): This statistic is used to detect anomalies in 
new observations by comparing T2 values to a determined 
threshold. Given an observation vector of the process, we 
can define this states statistic of the form (Eq. 7):

 (7)

This threshold can be calculated from the sample data fo-
llowing Eq. 8:

 (8)

Where n is the number of samples taken for the calculation 
of the PCA and Fa (a, n – a) is the critical value of the Fisher-
distribution) with n and (n – a) degrees of freedom and a level 
of significance, which specifies the degree of commitment to 
false alarms. Its most typical values are 0.01 and 0.05.

C. Cluster analysis
According to [25], K-means clustering is an unsupervised 

non-hierarchical clustering algorithm focusing on similarity. It 
was applied to group data into two clusters: one for normal 
conditions and another for fault conditions. Once PCA has re-
duced the data, we apply the K-means clustering algorithm to 
group the data points into clusters to identify normal and fault 
condition data clustering patterns [26]. Given a set of observa-
tions (x1, x2, x3,…, xn) and (S = S1, S2, S3,…., Sn) is the sum of 
the distances from the objects to its centroid and minimizing it; 
mi is the mean (also called centroid) of points in cluster (Eq. 9). 

 (9)

Finally, we used silhouette analysis to evaluate the quality of 
the clusters obtained. According to [5] Data i in the cluster Ci, 
a (i) is the average intra-cluster distance and (bi) is the average 
inter-cluster distance. The number s(i) is obtained by combi-
ning a(i) and b(i) following Eq. 10:

 (10)

The silhouette coefficient measures the coherence and se-
paration of the points within the clusters. However, instead of 
calculating the silhouette coefficient in the original data space, 
we calculate it in the principal component space. This allows us 
to visualize and evaluate the quality of the clusters in a lower-
dimensional space. These plots assess cluster cohesion and 
separation, indicating the effectiveness of segmentation. The 
silhouette score measures how well samples are clustered with 
similar samples to evaluate the quality of clusters produced by 
clustering algorithms like K-Means [4]. The silhouette score 
can range from -1 to 1, with higher values indicating well-clus-
tered objects and lower values suggesting that an object might 
belong to the wrong cluster.

D. Parameter Selection
The number of clusters (k=2) was determined for K-means 

clustering based on our prior knowledge of the system states 
(normal and fault conditions). For the silhouette analysis, a 
minimum silhouette score threshold of 0.5 was established to 
ensure cluster quality. For both analyses, the distance metric 
employed was “correlation,” which is defined by the Matlab 
Help Center as “One minus the sample correlation between 
points (treated as sequences of values).” In this context, each 
centroid represents the component-wise mean of the points 
within that specific cluster, following the procedure of cente-
ring and normalizing these points to achieve a zero mean and 
unit standard deviation. This approach ensures that the cluste-
ring process effectively captures the underlying relationships 
between data points while accounting for variations in scale 
and distribution. 

IV. RESULTS

A.Data Preprocessing and Principal Component Analysis
The results of the PCA analysis indicated significant dimen-

sionality reduction. The initial dataset, which comprised six 
variables, was effectively condensed into a lower-dimensional 
space. This reduction was achieved using three principal com-
ponents, which collectively accounted for at least 90 % of the 
total variance, (see Fig. 6). This finding underscores the effi-
cacy of PCA in simplifying complex datasets while retaining 
critical information.
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Fig. 6. Pareto

B. Clustering results

K-means clustering was applied to the data transformed 
through Principal Component Analysis (PCA), successfully 
generating two distinct clusters. One cluster represents nor-
mal operational conditions, while the other encapsulates fault 
conditions. This method effectively separates the data points 
corresponding to normal and fault conditions, thereby en-
hancing the understanding of the underlying patterns within 
the dataset. Such differentiation is crucial for monitoring and 
diagnosing system performance in various applications (see 
Fig. 7). The Silhouette scores were computed within the prin-
cipal component space, revealing strong indications of effec-
tive cluster separation and coherence. This analysis suggests 
that the clustering methodology employed is successful in 
distinguishing between the identified groups while maintai-
ning internal consistency among observations within each 
cluster (see Fig. 8).

Fig. 7. Clusters from Normal and Fault data by K-means

Fig. 8. Clusters from Normal (1) and Fault (2) data

C. AnomAly DeteCtion stAtistiCs

The T2 statistic threshold was determined using the Fisher 
distribution (see Fig. 9). Observations that exceed this thres-
hold were identified as potential anomalies, with significance 
levels set at 0.05. Figure 10 depicts the monitoring of the T2 
and how is able to detect the failure at the instant of occurren-
ce (1000).

Fig. 9. Threshold

Fig. 10. Fault Detection
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V. DISCUSSION

While our methodology has demonstrated promising results 
in fault detection, certain limitations must be acknowledged. 
Primarily, the approach tends to assume steady-state opera-
tional conditions, which may restrict its applicability in more 
dynamic environments characterized by rapidly changing sys-
tem states. Moreover, although Principal Component Analysis 
(PCA) is effective for dimensionality reduction, it may unin-
tentionally overlook complex nonlinear relationships present 
within the data. Additionally, the current clustering methodo-
logy necessitates complete retraining when encountering new 
fault types, which could hinder its adaptability and scalability 
across various hydraulic system configurations.

To mitigate these limitations, we could consider the integra-
tion of deep learning techniques to enhance the management 
of complex nonlinear relationships. Developing adaptive clus-
tering parameters would facilitate a more dynamic assessment 
of different operating conditions. Furthermore, extending the 
method to accommodate multi-fault classification scenarios 
would significantly enhance its versatility in hydraulic systems.

Performing a comparative analysis. The proposed method 
of PCA and silhouette analysis offers advantages in terms of 
computational efficiency, interpretability of results and ability 
to operate without labeled data. However, it is limited by its de-
pendence on linear relationships and requires careful parameter 
tuning. In contrast, deep learning techniques excel at capturing 
complex patterns and handling nonlinear relationships, but re-
quire large data sets and considerable computational resources. 
Fianlly, model-based approaches offer a unique perspective due 
to their physics-based understanding and ability to operate with 
limited data; however, they face challenges related to complex 
model development processes and system-specific constraints. 
These methodologies present a unique balance between com-
putational complexity, data requirements, and diagnostic accu-
racy, demonstrating the importance of selecting an approach 
that fits the specific characteristics of the hydraulic system and 
the objectives of each investigation.

 VI. CONCLUSION

The findings illustrate the effectiveness of this methodology in 
revealing clearer clustering patterns and helping to identify poten-
tial anomalies or deviations from standard operational conditions. 

The proposed methodology effectively reduces the dimen-
sionality of the data while preserving crucial essential informa-
tion for fault detection. Silhouette analysis within the principal 
component space emerges as a valuable tool to assess and vi-
sualize the quality of the cluster, which aids in the identifica-
tion of anomalies. The method shows promise for early fault 
detection by identifying possible transient states or emerging 
fault conditions.

Despite the encouraging results, further research is needed 
to validate the reliability of the method across various operating 
conditions and fault types. Future studies should incorporate 
systematic comparisons with other fault detection methods, 
investigate alternative clustering techniques, and validate the 
findings using a more diverse and extensive dataset.

Looking ahead, future work will focus on further exploring 
and refining this methodology across different domains and da-
tasets, as well as investigating other techniques and algorithmic 
combinations to achieve even more robust results. Fault detection 
is a continually evolving field, and the use of combined approa-
ches can enhance the accuracy and efficiency of these processes.
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