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Estimating Sample Size for Usability Testing  

(Estimación del tamaño de la muestra para pruebas de 

usabilidad) 
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Abstract: 

One strategy used to assure that an interface meets user requirements is to conduct usability 

testing. When conducting such testing one of the unknowns is sample size. Since extensive 

testing is costly, minimizing the number of participants can contribute greatly to successful 

resource management of a project. Even though a significant number of models have been 

proposed to estimate sample size in usability testing, there is still not consensus on the optimal 

size. Several studies claim that 3 to 5 users suffice to uncover 80% of problems in a software 

interface. However, many other studies challenge this assertion. This study analyzed data 

collected from the user testing of a web application to verify the rule of thumb, commonly known 

as the “magic number 5”. The outcomes of the analysis showed that the 5-user rule significantly 

underestimates the required sample size to achieve reasonable levels of problem detection. 
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Resumen: 

Una de las estrategias empleadas para asegurar que una interfaz satisfaga los requerimientos 

del usuario es la aplicación de pruebas de usabilidad. Cuando se aplican tales pruebas una de 

las incógnitas a despejar es el tamaño de la muestra. Dado que, realizar pruebas en forma 

extensiva es costoso, reducir al mínimo el número de participantes puede contribuir en gran 

medida a una gestión exitosa de los recursos de un proyecto. Aunque se han propuesto un 

número significativo de modelos para estimar el tamaño de la muestra en una prueba de 

usabilidad, todavía no hay consenso acerca del tamaño óptimo. Varios estudios afirman que de 

3 a 5 usuarios son suficientes para descubrir el 80% de los problemas en la interfaz de un 

sistema. Sin embargo, otros tantos estudios cuestionan la validez de esta aseveración. El 

presente estudio analizó los datos obtenidos de las pruebas de usuario de una aplicación web 

para verificar la regla práctica conocida comúnmente como “el número mágico 5”. El resultado 

del análisis mostró que la regla de los 5 usuarios subestima significativamente el tamaño de la 

muestra requerida para conseguir niveles razonables de detección de problemas. 
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1. Introduction 

The degree by which a software product meets user expectations in terms of its ease of use, 

effectiveness and efficiency, reflects the accomplishment of the intended usability goals of a software 

development project. Conducting usability testing is central to the realization of such goals because 
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it provides an effective tool to ensure that defects affecting usability are detected before the release 

of a new product.  

In all projects, efficient resource allocation is essential, particularly when the cost of resources is 

high. Since increasing the amount of user testing sessions directly impacts the project cost, budget 

constraints will limit the ability to conduct exhaustive user testing. Consequently, from an economical 

point of view, it is important to ensure that the benefit gained by additional testing is greater than the 

incurred costs. 

Determining the minimum number of participants that exposes most problems in a usability test is a 

problem that has generated a considerable amount of research and debate during the past two 

decades. In the early 1990’s, Virzi (1992), Nielsen and Landauer (1993), and Lewis (1994) were the 

first to publish methods to estimate the size of the smallest sample required to achieve a target 

proportion of problems discovered in a usability test. Their research, based on empirical data and 

statistical modelling, allowed them to make three outstanding claims: 

1) Most problems are discovered by the first three to five participants. 

2) The increment in problem discovery after five participants is minimal. 

3) ROI of usability testing can be maximized by minimizing the sample size. 

Since their publication, these claims also known as “4±1” or “magic number 5” have generated a 

great deal of discussion in the usability community, so much so that at the Computer-Human 

Interaction conference in 2003, a panel was dedicated to discuss this matter (Bevan, et al., 2003). 

This paper will focus on, and review the 4±1 model for estimating the sample size required to obtain 

a proportion of problem discovery of at least 80% in the testing of a web interface. Furthermore, the 

outcomes of a permutation test will be presented to investigate the effect of small samples on the 

estimation of the discovery rate. 

1.1. Background 

Three studies were considered for the provision of a suitable base calculation template to estimate 

sample size: (Virzi, 1992), (Nielsen & Landauer, 1993), and (Lewis, 1994). 

Virzi (1992) used empirical data from three experiments and Monte Carlo simulation to conclude that 

problem discovery rate and the number of participants establish an asymptotic relationship. In his 

experiments, trained testers observed that the amount of discovered problems depends on the 

number of participants and the likelihood of discovering a problem. This last parameter is known as 

problem discovery rate and represents the average of the fraction of problems observed for each 

user (or the average of the proportion of users that detected each problem). The proportion of 

problems discovered was modelled with the cumulative binomial probability formula, as follows: 

Proportion of problems = 1- (1 - p)n (1) 
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Where n is the number of participants, and p is the problem discovery rate. 

The problem discovery rate, for a testing session is equal to the quotient between the number of 

unique problems detected, and the number of problem occurrences observed by all participants. 

In (Nielsen & Landauer, 1993) data derived from eleven usability tests, and statistical modelling were 

used to reach a similar model. In this study, the number of detected problems is estimated as a 

function of n, p and the total number of problems N, as follows: 

Number of problems = N [1 - (1 - p)n ] (2) 

Both approaches estimate the number of participants (n) required to uncover a goal percentage of 

problems, with a given problem discovery rate (p).    

n = log(1 - Goal)/log(1 -  p) (3) 

Lewis (1994) applied the techniques used in (Virzi, 1992)  to empirical data from usability testing 

conducted on a piece of software for office applications. The findings of this study coincided with 

Virzi’s results. Nevertheless, he noted a potential overestimation of p in small-sample estimation. 

Several authors have challenged the soundness of modelling problem rate discovery with a single 

value for p. Woolrych and Cockton (2001) contend that problems do not affect users uniformly, thus 

estimation based solely on problem frequency is misleading. Caulton (2001) argues that due to the 

heterogeneity of users, different types of users will discover different kinds of problems. Therefore, 

the model should incorporate a term that considers the number of user sub-groups. Turner, Lewis, 

and Nielsen (2006) responded to criticism of sample size formulae by providing a method to adjust 

the estimated average problem frequency. 

2. Methodology 

The steps involved in this study are summarized as follows: 

• Obtain data from user testing. 

• Process data to identify unique and repeated problems. 

• Calculate parameters and metrics from this data to make observations. 

One of the components of the last step in this process is using the calculated parameters to 

determine the number of user tests or samples required to achieve a level of problem discovery. 

Later, we employed a permutation test to investigate the distribution of the estimates of the problem 

discovery rate. In addition, we analyzed the accuracy of the estimation by comparing the mean 

scores of the estimates against the true value of p. Finally, this number was used to answer the 

question of whether the number of user tests undertaken was enough to reach a percentage of 

problem detection greater than 80%. 
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To review the consistency of the results, the parameters from two different datasets were computed. 

2.1. Data sources 

To obtain data required for the proposed analysis, two datasets were sourced from two independent 

rounds of testing of a web interface. In the tests, participants were requested to identify usability 

problems in the interface under study. In total, 34 different respondents participated in both surveys, 

17 testers each. The second survey was undertaken two weeks after the first one. 

To prepare the user testing data for parameter estimation, two passes were made over each dataset. 

The first pass was used to identify unique problems, which were catalogued and numbered. Later, 

the second pass counted which users identified which problem or problems. This process then 

resulted in a grid structure which shows the problem count for each user test, specifying the problem 

or problems, observed by each tester. This process also allowed the identification of problems 

identified by more than one tester. Table 1 shows the processed data from Dataset #2 

2.2. Parameter estimation 

As per formula (1) the proportion of problems discovered depends on the problem discovery rate (p). 

To estimate this parameter, the quotient between the number of unique problems and the number 

of problem occurrences observed by participant is computed. As an example, consider the data in 

Table 1, in which there are 17 participants, 8 problems, and 28 problem observations (cells 

containing an “x”), with these values p is 0.21 = 28/(8*17).  

2.3. Monte Carlo simulation 

In many real-life applications, resource constrains prevent to gather enough participants to properly 

estimate the sample size. In such scenarios, p is estimated from small samples, using rules of thumb 

such as the “magic number 5”. Hertzum and Jacobsen (2001), and Lewis (2000) investigated the 

effect of this practice, finding that small-sample estimation produce overestimation of this parameter, 

which will potentially lead to underestimate the required sample size, and to overestimate the 

proportion of problems discovered in a usability testing.  

To illustrate this, suppose that in Table 1 p is computed after the sixth test. The number of problems 

discovered up until that point is 3, with 7 problem occurrences. The value of p computed with these 

data would be 0.39 = 7/(3*6), which results in an overestimation of 85% of its true value. If the 

proportion of problems discovered were projected with the estimated of p, a practitioner would 

overestimate the number of problems uncovered and stop the testing earlier than needed to achieve 

a reasonable goal of problem discovery.  

Since the selection of the sample to estimate p is arbitrary, different samples (data subsets) will 

produce different estimates. To investigate the distribution of the estimates, we used Python 

language and NumPy package to write a program that implements Monte Carlo sampling with 1000 

permutations. According with (Lewis, 2000) this number of permutations produce a close 
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approximation to complete factorial combination. The outcomes of the permutation test were used 

to compute statistics of the distribution of p, and the proportion of problems discovered, as a function 

of the sample size across permutations. 

Table 1. Problem count grid from data-set #2 

Participant 
Problem Id 

Problem Count 
1 2 3 4 5 6 7 8 

1 x x       2 

2         0 

3         0 

4  x       1 

5 x x       2 

6  x x      2 

7 x     x   2 

8  x   x    2 

9 x x       2 

10 x    x   x 3 

11 x   x x  x x 5 

12 x x     x  3 

13  x       1 

14 x        1 

15         0 

16 x        1 

17  x       1 

Problem count 9 9 1 1 3 1 2 2 28 

Note. In the grid a cell containing an “x” denotes the observation of one of the problems by one of the users. 

2.4. Adjustment of the estimation of p 

In (Lewis, 2001) several adjustment techniques are reviewed and synthesized into one method, the 

author regarded as the most accurate, to adjust the estimate of p. The formula to adjust the value of 

the p, is: 

padj = 1/2 [(pest - 1/n)(1 - 1/n)] + 1/2[ pest /(1 + GTadj)] (4) 

Where n is the sample size used to compute the initial estimate of p, and GTadj is the Good–Turing 

adjustment to probability space. GTadj is obtained by dividing the number of problems that occurred 

once by the number of different problems. Going back to the example where p was estimated with a 

six-participant sample. The estimate for p applying Lewis’ adjustment is 0.229, which compared to 

true p gives a deviation of 11% (significantly lower than that of the initial estimate).  

3. Results 

3.1. Parameter estimation 

The number of users required to uncover a given percentage of usability problems can be projected 

as a function of the sample size used to estimate p. Tables Table 2 and Table 3, and figures Figure 

1 and Figure 2 present the estimates of the sample size required to uncover 80%, 90% and 99% of 

problems computed from datasets 1 and 2.  
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Table 2. Projected sample size to achieve 80%, 90% and 99% of problem detection for Dataset #1 

  Sample size 

Problem detection  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

80%  2 3 5 6 6 7 9 9 10 11 12 12 11 12 13 14 

90%  2 4 6 8 9 10 12 13 14 16 17 17 16 17 19 20 

99%  5 8 13 17 17 21 25 26 27 31 34 35 33 34 37 40 

 

 

Figure 1. Required Sample Size estimated from Dataset #1. 

 

Table 3. Projected sample size to achieve 80%, 90% and 99% of problem detection for Dataset #2 

  Sample size 

Problem detection  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

80%  2 4 3 2 3 4 5 5 5 6 6 6 6 7 7 7 

90%  3 6 5 3 5 6 7 7 7 8 8 8 9 9 10 10 

99%  7 11 10 7 9 12 14 14 15 17 16 17 17 19 19 20 

 

 

Figure 2. Required Sample Size estimated from Dataset #2.  
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3.2. Statistics of the distributions of the estimation of p 

Monte Carlo simulation was undertaken to compute statistics of the distributions of the estimation of 

p, and the proportion of problems discovered for the two datasets as a function of sample size, across 

all permutations. The following statistics were computed: 

a)  Means of the estimates of p 

Table 4 and Figure 3 show the distribution of the means of the estimates of p as a function of sample 

size. 

Table 4. Mean estimates of p for datasets 1 and 2 

Sample size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Dataset #1 1.00 0.53 0.37 0.29 0.24 0.21 0.19 0.17 0.16 0.15 0.14 0.13 0.13 0.12 0.12 0.11 0.11 

Dataset #2 1.00 0.62 0.48 0.42 0.37 0.34 0.31 0.29 0.28 0.26 0.25 0.24 0.23 0.22 0.22 0.21 0.21 

 

 

Figure 3. Mean estimated p as a function of sample size 

 

b) Overestimation ratios of mean estimated p 

The overestimation ratios were computed against the true value of p of each dataset, and provide a 

measurement of the deviation of the means of the estimates as a function of sample size. A ratio of 

1 indicates no overestimation, while a ratio greater than 1 denotes a overestimation percentage 

equal to (ratio – 1)*100. 

Table 5. Overestimation ratios for datasets 1 and 2 

Sample size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Dataset #1 9.15 4.83 3.39 2.67 2.23 1.95 1.74 1.58 1.47 1.37 1.29 1.23 1.17 1.12 1.08 1.04 1.00 

Dataset #2 4.86 2.99 2.35 2.04 1.82 1.66 1.52 1.42 1.34 1.27 1.21 1.16 1.12 1.08 1.05 1.02 1.00 
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Figure 4. Overestimation ratios of p as a function of sample size 

c) Root medium square error (RMSE) of mean estimated p 

The root mean square error is the mean squared difference between each data point and the true 

value of p for the distribution. Compared to the standard deviation, the RMSE provides a more 

accurate measure of accuracy because it is sensitive to both the central tendency and variance. The 

lower the value the RMSE, the lower variance of the measurement. A RMSE of 0 indicates a perfect 

estimate. 

Table 6. RMSE of mean estimated p for datasets 1 and 2 

Sample size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Dataset #1 0.89 0.43 0.27 0.19 0.14 0.11 0.09 0.07 0.06 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.00 

Dataset #2 0.79 0.43 0.30 0.24 0.19 0.15 0.12 0.10 0.08 0.07 0.05 0.04 0.03 0.03 0.02 0.01 0.00 

 

 

Figure 5. RMSE of estimated p as a function of sample size 
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3.3. Adjustment of the estimates of mean p 

To adjust the estimates of the means of p, the method described in (Lewis, 2001) was used. Table 

5 shows statistics of the distribution of adjusted p along with the same statistics of the distribution of 

the initial estimation. 

Table 7. Statistics of the distribution of unadjusted and adjusted p for datasets 1, y 2 

 DataSet #1 
  

DataSet #2 

 Initial Adjusted 
 

 Initial Adjusted 

median 0.27 0.16 
 

median 0.27 0.07 

average 0.34 0.18 
 

average 0.16 0.09 

mode 0.21 0.15 
 

mode 0.11 0.06 

 

3.4. Projected proportion of problems and sample for unadjusted, adjusted and true p 

Figure Figure 6, Figure Figure 7, and Table 8 show the proportion of problems discovered against 

the projected sample size for the average values of p (initial, adjusted, and true) for both datasets. 

 

Figure 6. Proportion of problems discovered for Dataset #1 against projected p 

 

Figure 7. Proportion of problems discovered for Dataset #2 against projected p 
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Table 8. Proportion of problems discovered as function of p and sample size 
 DataSet 2  DataSet 1 

Projected sample Initial Adjusted True p   Initial Adjusted True p 

1 0.34 0.18 0.21  0.16 0.09 0.11 

2 0.56 0.33 0.37  0.29 0.17 0.21 

3 0.71 0.45 0.50  0.41 0.25 0.30 

4 0.81 0.55 0.60  0.50 0.31 0.37 

5 0.87 0.63 0.68  0.58 0.38 0.44 

6 0.92 0.70 0.75  0.65 0.43 0.50 

7 0.95 0.75 0.80  0.70 0.48 0.56 

8 0.96 0.80 0.84  0.75 0.53 0.61 

9 0.98 0.83 0.87  0.79 0.57 0.65 

10 0.98 0.86 0.90  0.83 0.61 0.69 

11 0.99 0.89 0.92  0.85 0.65 0.72 

12 0.99 0.91 0.94  0.88 0.68 0.75 

13 1.00 0.92 0.95  0.90 0.71 0.78 

14 1.00 0.94 0.96  0.91 0.73 0.80 

15 1.00 0.95 0.97  0.93 0.76 0.83 

16 1.00 0.96 0.98  0.94 0.78 0.85 

17 1.00 0.97 0.98  0.95 0.80 0.86 

18 1.00 0.97 0.98  0.96 0.82 0.88 

19 1.00 0.98 0.99  0.96 0.83 0.89 

20 1.00 0.98 0.99  0.97 0.85 0.90 

21 1.00 0.98 0.99  0.97 0.86 0.91 

22 1.00 0.99 0.99  0.98 0.87 0.92 

23 1.00 0.99 1.00  0.98 0.89 0.93 

24 1.00 0.99 1.00  0.98 0.90 0.94 

25 1.00 0.99 1.00  0.99 0.91 0.95 

26 1.00 0.99 1.00  0.99 0.91 0.95 

27 1.00 1.00 1.00  0.99 0.92 0.96 

28 1.00 1.00 1.00  0.99 0.93 0.96 

29 1.00 1.00 1.00  0.99 0.94 0.97 

30 1.00 1.00 1.00  0.99 0.94 0.97 

31 1.00 1.00 1.00  1.00 0.95 0.97 

32 1.00 1.00 1.00  1.00 0.95 0.98 

33 1.00 1.00 1.00  1.00 0.96 0.98 

34 1.00 1.00 1.00  1.00 0.96 0.98 

35 1.00 1.00 1.00  1.00 0.96 0.98 

36 1.00 1.00 1.00  1.00 0.97 0.98 

37 1.00 1.00 1.00  1.00 0.97 0.99 

38 1.00 1.00 1.00  1.00 0.97 0.99 

39 1.00 1.00 1.00  1.00 0.97 0.99 

40 1.00 1.00 1.00  1.00 0.98 0.99 

41 1.00 1.00 1.00  1.00 0.98 0.99 

42 1.00 1.00 1.00  1.00 0.98 0.99 

43 1.00 1.00 1.00  1.00 0.98 0.99 

44 1.00 1.00 1.00  1.00 0.98 0.99 

Note. Highlighted rows indicate the projected sample size required to uncover 80%, 90%, 99% of problems 

        

 

4. Discussion 

4.1. Parameter estimation 

There are two quite significant outcomes from the analysis of the parameter estimation (Figure 1 and 

Figure 2). The first brings into question the rules of thumb proposed by Virzi (1992), Nielsen and 
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Landauer (1993), and Lewis (1994), in the estimation of the number of user tests required to obtain 

the desired level of problem discovery. 

The second significant outcome is the impact on the sample size of users required for increasing 

levels of problem discovery. As can be seen from the results from both data-sets, the amount of 

extra testing required to reach a 99% problem discovery outcome is significantly higher than that of 

the 90% level. This points towards a higher marginal cost of each extra problem discovered, 

especially once past the 90% threshold. 

The analysis also confirms the commentary by Lewis (1994) on the variability problems associated 

with using small samples to estimate the number of samples needed for the required level of problem 

discovery. Even though the goal of Lewis’ adjustments to the p value were to designed improve the 

calculation of the sample size required for smaller data-sets, the smaller user-test end of the scale 

for both data-sets showed quite a lot of variability between the test sets, however on both charts the 

results level out after about eight or nine user tests, thus providing a level of comfort in the suggested 

sample size results. 

This eventual levelling out of results suggests a way to use this type of analysis in practice. If the 

percentage of problem discovery required is known, after each user test this analysis can be run to 

determine if more tests are required. For example, if 90% problem discovery is required, if this 

analysis had been done with Data-Set #1 then it would have been discovered that somewhere 

between 30 and 40 tests were required, thus pushing the testing past the actual 17 test users. 

Conversely, testing on Data-Set #2 could have stopped earlier as only 12 or 13 tests were required 

to hit the 90% problem discovery threshold. 

In both scenarios, the question remains as to the “levelling out” point. However, this could be 

calculated using traditional statistical techniques. 

4.2. Overestimation and adjustment of p 

Analysis of the distribution of the estimates of p confirms the assertion in (Lewis, 2000)  that the 

effect of overestimation is significant for small samples. Figure 3 shows that the means of the 

estimates increment their deviations exponentially as the size of the sample used to estimate 

decreases. In Figure 4, all samples less than 8 produce an overestimation greater than 50%, while 

in Figure 5 the RMS error grows consistently as the sample size shortens. Tables Table 5 and Table 

6 confirm this trend. Considering the overestimation ratios, and the RMS errors of the mean 

estimates, it is evident that the smaller the sample the lower the accuracy of the estimation.  

Comparison of the projected proportion of problem detection (and the associated sample size) 

computed with the initial estimate, the adjusted estimate, and true p (Table 6) shows that the initial 

estimate reaches a proportion greater than 80% earlier than the adjusted estimated, and the true 

value of the problem discovery rate. For dataset 1, the projected sample size to achieve 80% of 
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problems is 9 when computed with the initial estimate (5 testers less that the required sample 

calculated with true p), while the adjusted estimate projects a required sample of 17 users. On the 

other hand, for dataset 2, the difference between the projected sample computed with the initial 

estimates and the true sample size is lower (3 users). However, it is worth to note, that the error of 

estimation increases for 90% and 99% of problem detection. This can be observed in Figure 6 and 

Figure 7 where the adjusted estimation is closer to the true projection than the initial estimation is.  

Several studies (Virzi, 1992), (Nielsen & Landauer, 1993), (Lewis, 1994), (Caulton, 2001), (Turner, 

Lewis, & Nielsen, 2006), (Hwang & Salvendy , 2010) suggest that when conducting user testing it is 

sufficient to use rules of thumb such as 4±1and 10±2 to estimate the number of users required. 

In our study, we discovered that the use of such rules of thumb would have underestimated the 

actual number of users required to achieve reasonable levels of problem discovery. In the two data-

sets studied, the number of users required to achieve 90% problem discovery were 20 and 10 

respectively. This coincides with findings in (Bevan, et al., 2003), (Woolrych & Cockton, 2001), 

(Spool & Schroeder , 2001), (Faulkner, 2003), and (Lindgaard & Chattratichart , 2007). Furthermore, 

using small sample sizes can also be problematic as this produces large variability in testing results 

which cannot be fully adjusted for.   

Since the potential costs of achieving problem discovery at the 99% level are significantly higher 

than that of achieving the 90% level, the use of these levels should be carefully considered unless 

the development is for applications for which the cost of problems is quite high. 

One of the exciting possibilities of the results of this study would be the inclusion of continual problem 

discovery metrics into a user testing regime. Through continual testing of results, developers could 

optimize their testing to only include the required number of tests up to the desired problem discovery 

rate. This has the potential to concentrate testing resources on those cycles that need it rather than 

equally spreading resources across all cycles. 

One possible scenario of use for the 4±1 rule is in time constrained agile cycles, more appropriately 

towards the start of projects. At this part of the project cycle, there is almost no point in discovering 

100% or even 90% of possible problems if development is moving a pace which essentially wipes 

these problems out or replaces them with new ones. 

If a project is severely budget limited, then rules of thumb such as 4±1and 10±2 will also come into 

play, although we would suggest that the 4±1 rule be only used on relatively simple projects.  

This study was conducted in a specific project. However, the applied methodology could be applied 

to different project task types, different user groups and different environments to see if the rules of 

thumbs on the number of user tests required can be specified for different type of build projects of 
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differing complexity and task orientation. Such analyses should use at least eight or nine user tests 

in their parameter estimation to eliminate the small sample size issues that presented in this study. 
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