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Abstract: 
Cable Direct Driven Robots (CDDRs) are a special class of parallel robots but they are 
formed by replacing all the supporting rigid links with cables. Compare with traditional 
robots, these robots are good candidates for performing a wide range of potential 
applications. A Planar CDDR model is considered in this paper since no rotational move 
and no moment resistance are required on the end-effector, all 4 cables convene in a 
single point and the end-effector is modeled as a point mass. The main goal of this 
paper is to present a new approach in control by developing a Sliding Mode Controller 
(SMC) with a Fuzzy-PI as sliding surface using Fuzzy logic toolbox in Matlab/Simulink. 
The tests performed were Step change reference test and Tracking trajectory test to 
observe the behavior of the cables during the trajectory and the end-effector movement. 
Simulation was carried out on Planar 4-Cable CDDR to prove the effectiveness of the 
proposed control law and the results were compared with a PI Controller and a 
conventional SMC in terms of integral square error (ISE) index. Only the kinematic 
model of Planar 4-Cable CDDR is considered in this paper. 
 
Keywords: cable direct driven robot; sliding mode control; Fuzzy controller; PI 
controller; kinematic. 
 
Resumen: 
Los Robots accionados por cable (CDDR) son una clase especial de robots paralelos, 
pero se forman al reemplazar todos los enlaces rígidos de soporte por cables. En 
comparación con los robots tradicionales, estos robots son buenos candidatos para 
realizar una amplia gama de aplicaciones potenciales. En este documento se considera 
el modelo de un robot planar accionado por cables porque no se requieren movimientos 
de rotación, momentos de resistencia y los cables se reúnen en un solo punto conocido 
como efector final el cual se modela como una masa puntual. El objetivo principal de 
este documento es presentar un nuevo enfoque en el control mediante el desarrollo de 
un controlador por modos deslizantes (SMC) con una superficie deslizante difusa tipo 
PI utilizando Fuzzy logic toolbox en Matlab / Simulink. Las pruebas realizadas fueron: 
prueba de cambio de referencia y prueba de seguimiento de trayectoria para observar 
el comportamiento de los cables durante la trayectoria y el movimiento del efector final. 
La simulación se llevó a cabo en un robot planar accionado por cuatro cables para 
probar la efectividad de la ley de control propuesta y los resultados se compararon con 
un controlador PI y un SMC convencional en términos del índice de la integral del error 
cuadrático (ISE).  Solo el modelo cinemático del CDDR de 4 cables planar se considera 
en este documento. 
 
Palabras clave: robot accionado por cables; control por modos deslizantes; 
controlador difuso; controlador PI; cinemática. 
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1. Introduction 
 
Robots have made formidable progress into industries for manufacturing and 

assembly. Traditional robots with serial or parallel structures are unsuitable since the 
workspace requirements are higher as in (Oh & Agrawal, 2003) are presented. For these 
motives, cable-driven mechanisms have received attention and have been recently studied. 
The advantages shown in (Zanotto, 2011), cables and tendon-like components in robotics 
have catched the interest of many researchers in the last years. Cable-direct-driven robots 
(CDDRs) are structurally similar to parallel robots (Jin et al., 2013) (Williams, Gallina, & 
Rossi, 2001) wherein the end-effector is supported in parallel by n cables with n tensioning 
motors. As compared to rigid links, cables are lighter and can handle larger loads 
guaranteeing considerable ranges of motion.  However, one disadvantage is cables can 
only exert tension and cannot push on the end-effector. This property makes feedback 
control of CDDRs more defiant than conventional parallel robot as in (Babaghasabha, 
Khosravi, & Taghirad, 2014) is designed an adaptive controller in task space coordinates 
for a planar cable-driven parallel robot with uncertainties in dynamic and kinematic 
parameter or as in (Khosravi & Taghirad, 2014) a robust PID controller is presented for the 
cable-driven robot to ensure that all cables remain in tension. On the other hand, sliding 
mode control (SMC) is a nonlinear technique with robustness against the model 
uncertainties and ability of the disturbance rejection as in (Ataei & Shafiei, 2008) which 
introduced a SMC for a robot manipulator in order to deleting the oscillations of the 
response. Fuzzy control affords a methodology for representing, manipulating, and 
implementing a human’s heuristic knowledge about how to control a system. Fuzzy logic 
presents the ability to imitate the human mind to effectively occupy modes of reasoning that 
are approximate rather than exact. Designing of a Fuzzy Logic Controller (FLC) can show 
a lengthy process when performed heuristically (Nabi, 2013). FLC is identical to a 
conventional PID controller (Ghosh, Sen, & Dey, 2015). In case of FLC, control strategies 
are expressed in terms of fuzzy rules and this set of well-defined rules is known as fuzzy 
algorithm. Planar 4-Cable CDDR mode (Gallina, Rossi, & Williams II, 2001) is considered 
in this paper since no rotational move and no moment resistance are required on the end-
effector, all 4 cables convene in a single point and the end-effector is modelled as a point 
mass. A Sliding Mode Control with a Fuzzy PI as sliding surface for the kinematic model of 
Planar 4-Cable CDDR is proposed. The performance of this controller is compared with a 
PI Controller and a conventional SMC in terms of integral square error (ISE) index. The 
simulation results show the ability the proposed controller in comparison with the 
conventional controllers for trajectory tracking and step change reference. 
 
2. Methodology 

 
2.1. Model of Planar 4-Cable Direct Driven Robot 

 
In this paper, we use only the reverse kinematic pose solution (Williams Ii & Gallina, 

2003). Given the position  𝑃𝑟 = [𝑥 𝑦]𝑇  is found the cable lengths  𝐿𝑖 (𝑖 = 1,… ,4). The end-

effector position 𝑃𝑟 = [𝑥 𝑦]𝑇 is possible to get by geometrical considerations (Euclidean 

Norm) with each fixed ground link vertex 𝐴𝑖 (Motor Position). In Figure 1 shows the Planar 
4-Cable CDDR scheme. It is important to mention which each cable angle depend of 
quadrant. 

 The reverse kinematics pose solution is given in Equation 1, 
 

𝐿𝑖 = √(𝑥 − 𝐴𝑖𝑥)
2 + (𝑦 − 𝐴𝑖𝑦)

2
 

(1) 
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and the cable angles are given by Equation 2. 
 

𝑡𝑎𝑛−1 (
𝑦 − 𝐴𝑖𝑦

𝑥 − 𝐴𝑖𝑥
) 

 

(2) 
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Figure 1. Planar 4-Cable CDDR Scheme. 

Considering the 𝑖𝑡ℎ(𝑖 = 1,… ,4) cable vector-loop closure equation [𝑥 𝑦]𝑇 = [𝐴𝑖𝑥 +

𝐿𝑖𝑐𝑜𝑠θ𝑖  𝐴𝑖𝑦 + 𝐿𝑖𝑠𝑖𝑛θ𝑖]
𝑇
 is calculated in the velocity kinematics Equations 3 and 4. 

 

[
�̇�
�̇�
] = [

𝑐𝑜𝑠𝜃𝑖 −𝐿𝑖𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖 𝐿𝑖𝑐𝑜𝑠𝜃𝑖
] [

𝐿𝑖

𝜃�̇�
] 

   

(3) 

Inverting 𝑖𝑡ℎ cable Jacobian matrix we have Equation 4. 
 

[
𝐿�̇�

𝜃�̇�

] = [
𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖
𝐿𝑖

⁄
−𝑐𝑜𝑠𝜃𝑖

𝐿𝑖
⁄

] [
�̇�
�̇�
] 

   

(4) 

In order to build the inverse velocity solution of Planar 4-Cable CDDR (�̇� = 𝐽𝑃�̇�) is 

necessary to eliminate the second row 𝜃�̇� as (Williams Ii & Gallina, 2003) to relation the 
cable length rates and the end-effector velocity as shown in Equation 5. 
 

[
 
 
 
 
𝐿1̇

𝐿2̇

𝐿3̇

𝐿4̇]
 
 
 
 

= [

𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃1

𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃2

𝑐𝑜𝑠𝜃3 𝑠𝑖𝑛𝜃3

𝑐𝑜𝑠𝜃4 𝑠𝑖𝑛𝜃4

] 

   

(5) 

The alternate forward velocity solution with �̇� as inputs, is calculated through the left 
pseudoinverse Equation 6, 
 

𝑃�̇� = 𝐽∗�̇� 
   

(6) 

where 𝐽∗ = (𝐽𝑇𝐽)−1𝐽𝑇 is the left pseudoinverse. 
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2.2. Design of controllers for Planar 4-Cable Cable Direct Driven Robot 
 

This section designs different controllers for Planar 4-Cable (CDDR) based on the 
kinematic model. The designed controllers are a PI Controller, a conventional SMC and a 
Fuzzy Logic Controller. 
 
2.2.1. PI Controller 
 

In order to design a PI controller, it is necessary to know the error. The control scheme 
of this controller is presented in Figure 2. 
 

Kp
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Figure 2. PI control scheme. 

The tracking error vector is defined in Equation 7, 
 

𝑒(𝑡) = 𝑃𝑑(𝑡) − 𝑃𝑟(𝑡) 
   

(7) 

where 𝑃𝑑(𝑡) is the desired position vector and 𝑃𝑟(𝑡) is the robot position vector. 
 
This controller has the form given in Equation 8. 

 

𝑃𝐼(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

 
(8) 

 
Applying this controller to the kinematic model of Planar 4-Cable CDDR is necessary 

to multiply by 𝐽, getting �̇�𝑖 as control actions, as in Equation 9, 
 

𝐶(𝑡) = �̇�𝑖 = 𝐽 (𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

) 

 

(9) 

where 𝐾𝑝 and 𝐾𝑖 are tuning parameters. These parameters have been selected by 

trial and error until achieving the lowest ISE index. 
 
2.2.2. Sliding Mode Controller 
 

This section shows the design of a SMC with a PI sliding surface (See Figure 3) from 
the kinematic model of Planar 4-Cable CDDR as in (Villacres, Herrera, Sotomayor, & 
Camacho, 2017) designs a conventional SMC with a PID sliding surface. 
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Figure 3. SMC control scheme. 
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In order to design a conventional SMC, this sliding surface is considered as in 
Equation 10, 
 

σ(𝑡) = (
𝑑

𝑑𝑡
+ λ)

𝑛

∫𝑒(𝑡)𝑑𝑡 

 

(10) 

where 𝑛 is the order of the system and λ is a positive constant. 
 

This controller has two components: a continuous 𝑢𝑐(𝑡) and a discontinuous 𝑢𝑑(𝑡), 
shown in Equation 11. 
 

𝑢(𝑡) = 𝑢𝑐(𝑡) + 𝑢𝑑(𝑡) (11) 
 

The system studied is the first order 𝑛 = 1 for this reason the derivative part of the 
surface is eliminated. The surface is expressed as in Equation 12. 
 

σ(𝑡) = 𝑒(𝑡) + λ∫𝑒(𝑡)𝑑𝑡 
(12) 
 

Now, the surface must be derived for the development of the controller (Equation 13). 
 

σ̇(𝑡) = �̇�(𝑡) + λ𝑒(𝑡) (13) 
 

By substituting Equation 7 in Equation 13 we have Equation 14. 
 

σ̇(𝑡) = (�̇�𝑑(𝑡) − �̇�𝑟(𝑡)) + λ𝑒(𝑡) 

 

(14) 
 

By replacing Equation 6 in Equation 14, σ̇(𝑡) it can be rewritten as in Equation 15. 
 

σ̇(𝑡) = (�̇�𝑑(𝑡) − 𝐽∗�̇�) + λ𝑒(𝑡) (15) 
 

The continuous part of the controller is provided with the condition to keep the output 

on the sliding surface σ̇(𝑡) = 0 and considering the control law as 𝑢𝑐(𝑡) = �̇� (Equation 16). 
 

𝑢𝑐(𝑡) = 𝐽 (�̇�𝑑(𝑡) + λ𝑒(𝑡)) (16) 
 

By completing the SMC control law, the discontinuous part  𝑢𝑑(𝑡)  is added in 
Equation 17, 
 

𝑢𝑆𝑀𝐶 = 𝐽[�̇�𝑑(𝑡) + λ𝑒(𝑡)] + 𝐽[𝑘1𝑠𝑖𝑔𝑛(𝜎(𝑡))] (17) 
 

where 𝑢𝑑(𝑡) is responsible for reaching sliding surface and is composed of a non-

linear function 𝑠𝑖𝑔𝑛(σ(𝑡)) which switches about the sliding surface and 𝑘1 > 0 is a tuning 

parameter. These considerations were taken from (Herrera, 2017). 
 

In order to design 𝑢𝑑(𝑡)  a positive-definite Lyapunov function 𝑉  is defined in 
Equation 18.  

 

𝑉 =
1

2
σ(𝑡)𝑇σ(𝑡) > 0 

 

(18) 
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The derivative of the function 𝑉 must be negative-definite (Equation 19). 
 

�̇� = σ(𝑡)𝑇σ̇(𝑡) < 0 
 

(19) 
 

By replacing equation 15, �̇� is as in Equation 20. 
 

�̇� = σ(𝑡)𝑇[(�̇�𝑑(𝑡) − 𝐽∗�̇�) + λ𝑒(𝑡)] 
 

(20) 
 

The control law is defined as �̇� = 𝑢𝑐(𝑡) + 𝑢𝑑(𝑡) and substituting we have Equation 21. 
 

�̇� = σ(𝑡)𝑇 [(�̇�𝑑(𝑡) − 𝐽∗(𝑢𝑐(𝑡) + 𝑢𝑑(𝑡))) + λ𝑒(𝑡)] (21) 
 

To satisfy Equation 19 and replacing Equation 16 in Equation 21, �̇� should be as in 
Equation 22, 
 

�̇� = 𝜎(𝑡)𝑇[−𝐽𝑘1𝑠𝑖𝑔𝑛(𝜎(𝑡))] < 0 

 

(22) 
 

where 𝑘1 > 0. 
 
Therefore, by analyzing (Equation 23): 
 

𝑖𝑓 σ(𝑡) > 0 →  𝑠𝑖𝑔𝑛(σ(𝑡)) > 0 

𝑖𝑓 σ(𝑡) < 0 →  𝑠𝑖𝑔𝑛(σ(𝑡)) < 0 

 

(23) 
 

 
Finally, to reduce the chattering effect (Camacho & Smith, 2000), 𝑢𝑑(𝑡)  can be 

rewritten as a sigmoid function in Equation 24, 
 

𝑢𝑑(𝑡) = 𝐽 [𝑘1

σ(𝑡)

|σ(𝑡)| + δ
] 

 

(24) 
 

where δ is a chattering parameter reduction.  
 
2.2.3. Fuzzy - Sliding Mode Controller  

 
In this section, PI-Fuzzy sliding surface is proposed to a conventional SMC. The 

selection of this surface is based on the qualitative knowledge about the process to be 
controlled and was designed using Fuzzy logic toolbox in Matlab/Simulink. For the surface 
design, there are two inputs and one output. The surface is defined by Equation 25.  

 

σ(𝑡) = 𝑠𝐹 (𝑒(𝑡),∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

) 

 

(25) 
 

The control scheme of Fuzzy-SMC Controller is shown in Figure 4. 
The Member Functions (MFs) are namely, NB (Negative Big), NM (Negative Medium), 

NS (Negative Small), ZE (Zero), PS (Positive Small), PM (Positive Medium), and PB 
(Positive Big) which are defined as symmetric triangles having 50% overlap. These MFs 
are shown in Figure 5. For the two input variables (error and integral error), the range for 
universe of discourse is [-2 2] and for the output variable (action control), it is defined in the 
range [-0.6 0.6] (Ghosh et al., 2015).  
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Figure 4. Fuzzy-SMC control scheme 

 

 
Figure 5. MFs for the input and output variables. 

The selected rules for the sliding surface are listed in Table 1.  The forty-nine fuzzy 
rules are based on sliding mode principle (Palm, 1992). 

 
Table 1. Fuzzy Control Rules. 

∫𝒆 / 𝒆 NB NM NS ZE PS PM PB 

NB NB NB NB NM NS NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PM PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PM PB PB PB 

 
3. Simulation results 

 
The controllers were implemented in Matlab/Simulink 2017a using the kinematic 

model of Planar 4-Cable CDDR. The tests were run on a computer with an Intel(R)Core(TM) 
i7-5500U CPU @ 2.40GHz with 8,00 GB RAM, running Windows 10. Figure 6 shows the 
simulator developed to observe the behavior of the cables during the trajectory. Two tests 
were performed:  

 

 Step Change Reference Test  

 Tracking Trajectory Test  

The simulation had a duration of 110 seconds with a sampling time of 0.1 for each 
test and uses ODE45 (Solve non-stiff differential equations). The physical parameters of 
Planar 4-Cable CDDR are presented in Table 2.  
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Table 2. Parameters Planar 4-Cable CDDR. 

Parameter Unit Description 

𝐴1 = (−0.35, −0.35) [𝑚] Motor position 1 

𝐴2 = (0.35, −0.35) [𝑚] Motor position 2 

𝐴3 = (0.35,0.35) [𝑚] Motor position 3 

𝐴4 = (−0.35,0.35) [𝑚] Motor position 4 

 
Finally, the values of 𝐾𝑝 and 𝐾𝑖 for PI Controller and 𝜆, 𝑘1 and 𝛿 for SMC have been 

selected by trial and error until achieving the lowest ISE index. In Table 3 are shown these 
values.  

 
Table 3. Tuning parameter for the controllers 

Tuning Parameter Value 

𝐾𝑝 10 

𝐾𝑖  0.08 

λ 0.5 

𝑘1 1 

δ 0.1 

 
We used Equations 26 and 27 to compare the controllers based on ISE index. 

∆1 corresponds to the comparison between conventional SMC and Fuzzy-SMC Controller 
and ∆2 corresponds to the comparison between PI Controller and the control law proposed,  
 

Δ1% =
𝑒1 − 𝑒2

𝑒1 + 𝑒2
2

⋅ 100 (26) 
 

 

Δ2% =
𝑒1 − 𝑒3

𝑒1 + 𝑒3
2

⋅ 100 

 

(27) 
 

where 𝑒1, 𝑒2 and 𝑒3 represent error values for Fuzzy-SMC Controller, PI Controller 
and conventional SMC respectively.  
 
3.1. Step change reference test 
 

In this test, a step change reference is made from the reference 𝑋𝑟 = [0  0] to the 

point 𝑋𝑑 = [0.2 − 0.2]. In Figure 6 illustrates the end-effector path.  

 
Figure 6. XY Graph, step change reference. 
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Figure 7 presents 𝑥 and 𝑦 end-effector positions during the change reference to the 
position 𝑋𝑑 = [0.2 − 0.2]. The percentage overshoot of Fuzzy-SMC Controller is less than 
conventional SMC and the setting time is lower than PI Controller. 

 
Figure 7. 𝑥 and 𝑦 end-effector positions in step change reference test. 

In Table 4 shows ISE index comparison between three controllers for step change 
reference test wherein the performance of Fuzzy-SMC Controller is the best according to 
ISE index.  
 

Table 4. ISE step change reference test. 

 PI SMC Fuzzy-SMC 𝚫𝟏% 𝚫𝟐% 

𝑋 0.0080 0.0039 0.0017 78.57 129.89 

𝑌 0.0080 0.0039 0.0017 78.57 129.89 

 
3.2. Tracking trajectory test: square 
 
In this test, the selected trajectory is a square whose side length is 0,4[m]. In Figure 8 
illustrates the efficiency of three designed controllers for this desired trajectory.  

 
Figure 8. XY graph, square trajectory. 

In Figure 9 presents an image zoom at beginning and at the corner of the square 
trajectory which shows Fuzzy-SMC Controller has lower overshoot than conventional SMC. 
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Figure 9. XY graph zoom, tracking trajectory test. 

In Table 5 shows the ISE comparison between the three controllers for tracking 
trajectory test.  

 
Table 5. ISE tracking trajectory test. 

 PI SMC Fuzzy-SMC 𝚫𝟏% 𝚫𝟐% 

𝑋 0.0090 0.0038 0.0018 78.57 133.33 

𝑌 0.0090 0.0038 0.0018 78.57 133.33 

 
In all tests, the proposed control law presents the lowest ISE index compared to the 

two controllers, the first is a PI controller and the other is a conventional SMC controller. In 
the two tests performed, the movement of the end effector is significantly improved because 
the fuzzy controller applied to the sliding surface softens the control actions which are abrupt 
of the SMC controller. 

 
4. Conclusion 

 
In this paper, PI, SMC and Fuzzy-SMC controllers were designed for end-effector 

position control of Planar 4-Cable CDDR based on the kinematic model. These controllers 
were able to perform trajectory tracking and step change reference wherein the results 
indicate which SMC with Fuzzy-PI as sliding surface with forty-nine rules presents lower 
setting time than PI controller and lower oscillation than the conventional SMC. The 
performance of the controller was evaluated in terms of integral square error (ISE) index 
and these results demonstrate the effectiveness of proposed controller showing an 
acceptable accuracy.  
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