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Abstract—Nowadays, the measurement of respiratory dynamics
is underrated at clinical setting and in the daily life of a subject,
still representing a challenge from a technical and medical point
of view. In this article we propose a concept to measure some
of its parameters, such as the respiratory rate (RR), using four
inertial sensors. Two different experiments were performed to
validate the concept. We analyzed the most suitable placement
of each sensor to assess those features and studied the reliability
of the system to measure abnormal parameters of respiration
(tachypnea, bradypnea and breath holding). Finally, we measured
post-COVID-19 patients, some of them with breath alterations
after more than a year of the diagnosis. Experimental results
showed that the proposed system could be potentially used to
measure the respiratory dynamics at clinical setting. Moreover,
while RR can be easily calculated by any sensor, other parameters
need to be measured with a sensor in a particular position.
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Resumen—Hoy en dı́a la medición de la dinámica respiratoria
está infravalorada en el ámbito clı́nico y en la vida diaria de
un sujeto, y sigue representando un reto desde el punto de vista
técnico y médico. En este artı́culo proponemos un concepto para
medir algunos de sus parámetros, como la frecuencia respiratoria
(FR), utilizando cuatro sensores inerciales. Se realizaron dos
experimentos diferentes para validar el concepto. Analizamos
la colocación más adecuada de cada sensor para evaluar esas
caracterı́sticas y estudiamos la fiabilidad del sistema para medir
parámetros anormales de la respiración (taquipnea, bradipnea y
retención de la respiración). Por último, realizamos mediciones
en pacientes posCOVID-19, algunos de ellos con alteraciones
respiratorias después de más de un año del diagnóstico. Los resul-
tados experimentales mostraron que el sistema propuesto podrı́a
utilizarse potencialmente para medir la dinámica respiratoria en
el ámbito clı́nico. Además, mientras que la FR puede calcularse
fácilmente con cualquier sensor, otros parámetros deben medirse
con un sensor en una posición determinada.

Palabras Clave - dinámica respiratoria, frecuencia respiratoria
(FR); sensores inerciales; comunicación inalámbrica; condición
posCOVID-19.

I. INTRODUCTION

THE breathing mechanism is a complex behavior driven
by control systems that regulate ventilation. The aim is

to respond optimally to the prevailing metabolic needs and
to various demands on the respiratory apparatus. Actually,
there is an automatic control system permanently aimed at
maintaining the arterial pH, 02, and C02 pressures (Pa02,
PaC02) within the range of normal values. In addition, various
systems can disrupt the automatic regulation in order to use
the respiratory system in nonrespiratory tasks such as speech,
singing, vomiting, and coughing, among others.

According to Milic-Emili [1], the brief has three parts, each
one is driven by different neural circuits: the inspiratory phase,
the expiratory phase I, and the expiratory phase II. During the
inspiratory phase, the burst neurons shoot to the inspiratory
ramp neurons and after a time, the switch-off neurons finish the
inspiratory phase and immediately starts the expiratory phase
I, this phase is a inhibiting activity because it counteracts
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the initially strong elastic recoil of the chest and slows down
the rate of exhalation in the first part of expiration. During
expiratory phase II the inspiratory muscles are inactive allowing
passive expiration. Expiratory muscles, such as abdominal
muscles and internal intercostals, are recruited only in cases of
increased ventilatory drive. The upper airway dilator muscles
are generally activated significantly earlier than the pump
muscle in order to allow the airways to be dilated before
any negative intrathoracic pressure is created.

The briefing is a complex system with extremely high
precision in its operating mode.

The measurement of respiratory dynamics includes pa-
rameters, such as respiratory rate (RR), respiratory tidal
volume, depth of breath, inspiration and expiration time. The
measurement of these parameters in both at clinical setting and
in the daily life, could be used for early diagnosis, prognosis,
and prevention of many diseases such as heart attack, stroke
or depression, among others [2], [3].

In particular, the measurement of human respiration is a
key factor in the diagnosis, monitoring and rehabilitation
of respiratory disorders [4]–[7]. On the other hand, RR is
also a vital signal and it can predict abnormalities in the
homeostatic equilibrium [6], [7]. Furthermore, Cretikos et al.
[7] and Massaroni et al. [8] suggest that it is possible to predict
physiological distress, anxiety, depression and panic attacks,
obstructive and central sleep apnea, bronchitis, asthma, and
other potentially serious adverse events.

Nowadays, the detection of RR at clinical setting is made
through auscultation or observation, counting the number of
breaths made in a minute (bpm). However, this method has
low credibility and can be ignored by the clinicians, or simply
overlooked and under-recorded [7]. To overcome this limitation,
different studies have been carried out in the area, both at the
level of contact-based methods and non-contact methods [8].

At clinical setting, spirometry or pneumotachograph methods
are also used to measure parameters related to human breathing.
The measurement is made with the help of a mouthpiece or face
mask [9]. Although these methods have a good accuracy rate,
they also have limitations, since they are not ergonomic and are
intrusive, not allowing to a comfortable continuous monitoring.

Since the last decade, the research community has been work-
ing in the development of novel technologies and methodologies
to overcome the limitations of current procedures [9]–[24].
Wearable sensors such as accelerometers, gyroscopes and inertial
measurement units (IMUs) arise like a potential alternative to
measure the respiratory parameters; however it is still a challenge
in a medical and technological point of view [8].

The use of accelerometers for the measurement of respiration
has been subject to a wide study, usually subject to validation.
As far as RR is concerned, the use of accelerometers has
been widely studied, both at the level of the upper thorax
and/or abdomen [12], [13]. Furthermore, some authors ([8],
[12], [13], [17], [25]) have suggested that the use of tri-
axial accelerometers allows the measurement of acceleration
regardless of the orientation of the body, which removes the
need to pay attention to the alignment of the sensors with the
largest axis of rotation characteristic of singles-axis or dual-axis
accelerometers.

Despite the evolution over time in terms of accelerometers,
they still have some limitations, namely the fact that they only
adapt to static situations. In this sense, it seems that there
is a general consensus that inertial sensors could avoid the
accelerometers limitation if data provided by the gyroscope are
also included, thus allowing adaptation to dynamic situations.

For instance, Heba Aly and Moustafa Youssef [5] proposed
a low-cost smartphone-based robust respiratory rate estimator
called Zephyr. In this research, it was demonstrated that
the values of the accelerometer and gyroscope sensors of a
smartphone placed on the chest of the subjects are affected by
the breathing mechanism. This breath rate estimator includes
an algorithm that filters out noisy signals as imputed, but
also performs a fusion of the sensors in order to increase the
accuracy of the estimator. Following the same line of thought,
Ja-Woong Yoon et al. [21] proposed a system to improve the
measurement of respiratory rate of individual accelerometer or
gyroscope through a fusion sensor with Kalman Filter.

In Elfaramawy et al. [19] a wearable patch sensor network
to measure the breathing rate and the frequency of coughing is
proposed. This system uses wearable wireless multimodal patch
sensors, a low-power 9-axis IMUs and a MEMS microphone.
In a more recent study, Elfaramawy et al. [20] used data
processing and fusion algorithms to calculate the respiratory
frequency and the coughing events in a more accurate way.

Ambra Cesareo et al. [9], [22] presented a wearable contact-
based device for respiratory rate assessment that uses 3
IMUs (two units are placed on the thorax and one on the
abdomen). In order to compensate the high levels of noise of
the accelerometers and the tendency to drift over time of the
gyro, an implementation of a filter proposed by Madgwick was
made [26]. This implementation allowed the representation
of the respiration using quaternions, like the system proposed
by Simon Beck et al. [23]; however, this system only uses
two IMUs: one located in the ventral area, while the other is
located in the dorsal area over the chest.

James Skoric et al. [24] developed a system that uses an IMU
which pairs a 3-axis acc and a 3-axis gyro for recording SCG (a
method of recording cardiac vibrations with an accelerometer
that can also be used to extract respiratory information).

On March 11, 2020, the World Health Organization (WHO)
declared the novel severe acute respiratory syndrome coro-
navirus (SARS-CoV-2) infection a pandemic [27]. Severely
affected COVID-19 cases experience high levels of proinflam-
matory cytokines and acute respiratory dysfunction and often
require assisted ventilation.

Taking into account the pandemic situation, its symptoms and
the previous scientific results related to measuring respiratory
dynamics, we propose an alternative technique that is non-
invasive, ergonomic, wearable, and wireless system based on
four commercial inertial sensors to measure automatically the
respiratory dynamics.

The main objectives of our research are to define a repro-
ducible procedure to measure respiratory parameters and to
objectively evaluate the advantages and drawbacks of inertial
sensors available in the market. In order to do that, we selected
the most suitable wireless and ergonomic sensors considering
the price/quality ratio. We measured respiratory dynamics in
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both, healthy and post-COVID-19 conditions. While the first is
to replicate the current manual procedure followed at clinical
practice, the second is to validate the reliability of the proposed
concept with post-COVID-19 patients.

This article is organized as follows: Section II presents the
materials and methods used in our research, where we described
the concept, the technology used for the measurement (software
and hardware) as well as the main data related with the groups
of healthy volunteers and post-COVID-19 patients used to
validate the main hypothesis. Section III describes hypothesis
and shows the results, while the discussion is made in Section
IV. Finally, the main conclusions of this research and the future
steps are presented.

This research is authorized by the ethical committee of
Universidad Politécnica de Madrid and all volunteers signed
the informed consent.

II. MATERIALS AND METHODS

In this section we describe our conceptual setup based
on inertial sensors. The concept was validated with healthy
volunteers and post-COVID-19 patients.

Due to the fact that the inertial sensors used are not certified
as medical devices, before measuring patients, a group of
healthy volunteers was selected (without diagnosis of brief
pathology) in order to compare the measured values with the
medical literature to ensure the reliability of the data. Moreover,
we validated the number of sensors that should be used and
the position in the abdominal area and rib cage.

The objective was to evaluate the numbers of sensors to be
used, the reliability of IMUs to measure the respiratory dynamics,
the quality of the bluetooth connection, the usability of the
designed software interface, and the ergonomic characteristics
of the measuring system, among others.

On the other hand, it is also necessary to ensure that
the sensors are well coupled to the subjects, not causing
discomfort and promoting measurements with reasonable
accuracy. Through literature consultation, the coupling chosen
were sensor-skin adhesives, due to its hypoallergenic and non-
sensitising properties.

A. Software and Hardware architecture
The system is composed of four sensors from MetaMotionC.

Each one is a 9-axis IMU, that is a 3-axis accelerometer, a
3-axis gyroscope, and a 3-axis magnetometer.

This sensor was mainly selected due to its weight and size
(approximately 25 mm in diameter); in order to non inhibit or
influence on the normal breathing pattern of each subject, then
the ergonomic aspect of the sensor was considered.

Regarding communication options, sensors are based on a
Buetooth Low Energy (BLE) module and an ARM Cortex-
M4F MCU. As previously mentioned, each sensor is able to
communicate with a gateway devices. On the other hand, data
from the sensor can also be saved in a flash memory. A SDK
tool is provided to calibrate the sensor and to monitor the
calibration status.

The location of the sensors has been determined by the
body’s anatomy and the respiration dynamics. The four sensors

are placed in the trunk. The first one is located in the sternum.
The second one in the diaphragm, following a vertical line
down the sternum, just above the belly button. The other two
sensors are located on both sides of the trunk (intercostal
muscles), following the midaxillary line. The height of these
last sensors is found between the two previous ones located in
the sternum and the diaphragm.

Figure 1 shows the setup concept. The data acquired from
the sensors were sent to the MetaHub Gateway (Raspberry
Pi) via BLE communication protocol and from there to a
conventional computer for further analysis. A scheme to this
setup is presented in Figure 1.

Fig. 1. Developed system and its graphical user interface.

At this stage, algorithms were developed in order to assess
breathing patterns and the corresponding respiratory rate using
the Raspberry Pi. The algorithms were developed using the
Python Programming language.

The Euler angles (EA), Pitch, Roll and Yaw, were figured it
out for each sensors and saved in an excel file. Because the
output requires a fusion of the sensors (Accelerometer and
Gyroscope), a Kalman filter was implemented. The update rate
is 100 Hz. The flowchart in Fig. 2 summarized the processing
signal algorithm.

Fig. 2. Euler angles data system acquisition process.

III. DATA FILTERING, VISUALIZATION AND FEATURE
EXTRACTION

IMUs are affected by different errors, such as offset and
bias. In order to reduce these errors, before data acquisition,
the sensors were calibrated using the SDK tool provided by
Mbientlab. On the other hand, a Kalman filter was implemented
to reduce these limitations.

After the recording, all data was processed in Matlab. Figure
3 shows the flowchart of the overall signal processing. We
applied a linear detrend to all measured data to compute
the respiration rate and used a Low-pass filter and a second
order fitting Savitzky–Golay smoothing filter to reject both
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high frequency and noise peaks that can be generated by
motion artifacts.The Savitzky-Golay filter also facilitates the
identification of the Minimum and Maximum peaks. Data were
normalized using z-score procedure.

Once the signal is filtered, an analysis of the respiratory
signal is made over time in order to identify the peaks and
valleys, which represents a whole respiratory cycle. With this,
it is possible to retrieve the respiratory frequency of the signal,
as well as features related to the breathing pattern.

Fig. 3. Signal processing flowchart.

A. Software Interface
In order to monitor the respiratory dynamics, an interface

was developed under Matlab environment. A scheme of the
interface is showed in Figure 4. As it can be observed, the
application has different interactive options, such as buttons,
graphics, text area and table with different purposes. All these
functionalities are described bellow.

The data obtained are shown in two intuitive ways: graph-
ically and numerically, making easy to compare or monitor
the respiratory rate in real time. Moreover the visualization
area can be cleaned after that and the data can be saved. A
box dialog was included for writing medical opinion/analysis
related with the data. This information might be included in
the medical history of the patient.

As a first step, the user must click on both buttons (Load File)
related to the importation of excel files. In order to complete

this step, the user must select the excel files to be compared.
Once selected, the files will be imported and are ready to
undergo the next steps of the process.

After importing the files, there is a button (Plot) with the
functionality of filtering (Low pass filter and Savitzky-Golay
filter), normalising the data through z-score and then placing
it on the two graphs; filters were tunned experimentally.

Although a comparison is already possible by viewing the
graphs, this comparison is made easier when another button
is pressed. There is another button (Peak) that allows the
maximum and minimum peaks to be displayed, as well as
extracting the relevant features and displaying them in a table.

If the user wishes to compare two new graphs, it is only
necessary to use the button (Clean Plots) for cleaning the
graphs and proceed with the whole process with the new data.

The functionality to create comments for professionals
is ensured through the creation of a text area, where the
professional can save comments about the graphs, subjects
or about the difference between the two graphs.

In order to save the data related to the features, as well as
the comments made by the professionals, the ”Save” button was
created, which as soon as it detects a click saves the features data
and the comments in an excel file and in a text file, respectively.

B. Healthy volunteers and Patients

The participants were divided in three groups according
to the experimental necessities of our project. The group
1 (G1), healthy volunteers, participated in the validation of
the reliability of concept, while group 2 and 3 (G2 and G3,
respectively) participated in the respiratory data dynamics
validation. In the following paragraphs, we present the most
relevant demographics and clinical data for each group. All
participants were included after written informed consent.

Fig. 4. Matlab GUI after the feature extraction.
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For G1 group, 20 volunteers (15 men and 5 women)
without respiratory disease history or COVID-19 diagnosis
were recruited from university staff and family. The population
were (mean ± standard deviation): age 25.650 ± 12.097 years,
weight 66.400 ± 12.435 kg, with a height of 168.100 ± 9.402
cm. In this group, 65% of the subjects were students, 40%
practice sports at least once a week, 30% were smokers and only
20% had some kind of respiratory problem (rhinitis, sinusitis,
and bronchiolitis as a child).

In G2 group, 10 post-COVID-19 patients were selected
from the Patient Affected by COVID-19 Disease Association
(AMACOVID), Madrid. Two subjects were excluded after the
data analysis due to noise and communication issue, therefore
data from 8 participants (3 men and 5 women) were finally
included in the analysis. The post-COVID-19 population were
(mean ± standard deviation): age 49.556 ± 9.1422 years, weight
74.333 ± 19.293 kg, with a height of 164.0 ± 7.272 cm. Tables
I and II summarize the most relevant demography and clinical
data including a list with the daily activities.

TABLE I
GENERAL INFORMATION ABOUT POST-COVID-19 PATIENTS

Patient-ID Age Sex Height (cm) Weight (kg)

VAMA02 54 M 175 80

VAMA03 28 F 156 105

VAMA04 44 F 156 56

VAMA05 60 M 170 85

VAMA06 49 F 165 56

VAMA08 46 F 167 93

VAMA09 54 M 170 90

VAMA10 52 F 152 52

Table III shows the most relevant data related to the clinical
history of each patient.

Table IV summarizes the symptoms suffered by the patient
including the diagnosis date. The PCR-test (real-time reverse
transcriptase-polymerase chain reaction) was used to diagnose
the disease. Fever and pneumonia were the most common clinical
symptoms. Other symptoms reported by patients were: hair and
skin problems, headache, vomits, and cough, among others.

Table V summarizes the symptoms suffered by patients after
COVID-19 disease, however, some of these symptoms are still
present today. Other symptoms reported are: speech problems
and lost of force in the muscles of the extremities.

Finally, G3 group consisted of 5 (2 men and 3 women)
healthy volunteers (HV), without diabetes, heart, lung and brain
diseases. Demographic data were (mean ± standard deviation):
age 28.600 ± 12.706 years, weight 64.600 ± 12.831 kg, with
a height of 167.0 ± 10.351 cm. Table VI summarizes the most
relevant demography and clinical data while Table VII shows
the daily life activities.

TABLE II
MAIN DAILY-LIFE ACTIVITIES

Patient-ID Smoker Laboral
Activity

Recreative
activity Sport

VAMA02 No, never Commercial
tasks Read, write Run,

walk

VAMA03 No, never Housewife No No

VAMA04 No, never Housewife No No

VAMA05 Past (22
years)

Caretaker and
maintenance Dance, paint No

VAMA06 10 cigarettes
a day Cleaner No No

VAMA08 Past (1 year) Call center No No

VAMA09 Past (9
years) Worker No Walk

VAMA10 Past (19
years) Call center Paint, write No

TABLE III
MEDICAL HISTORY BEFORE COVID-19 DIAGNOSIS

Patient-ID Heart disease Respiratory disease Allergies

VAMA02 Arrhythmia No Pollen, pet hair

VAMA03 No Asthma Seafood, spices

VAMA04 No No No

VAMA05 No Apnea No

VAMA06 No No Pollen

VAMA08 No No No

VAMA09 No No No

VAMA10 No No Pollen, pets hair

TABLE IV
CLINICAL PICTURE UPON DIAGNOSIS

Patient-
ID

Diagnosis
Date

Diarrhea Pneumonia Fever Smell-
Taste

VAMA02 04/04/2020 X X X X

VAMA03 12/03/2020 - X X -

VAMA04 17/12/2020 - X X X

VAMA05 03/09/2020 - X X -

VAMA06 29/12/2020 - - X -

VAMA08 15/09/2020 - - X X

VAMA09 02/12/2020 - X X -

VAMA10 15/03/2020 X - - -
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TABLE V
SYMPTOMS AFTER DISEASE

Patient-ID Breathing problems Heart problems Memory problems⇤

VAMA02 X Arrhythmia -

VAMA03 X Tachycardia X

VAMA04 - - X

VAMA05 X(walking) - -

VAMA06 - - X

VAMA08 - - X

VAMA09 X - X

VAMA10 X(chest pressure) - X

? Subjective memory complaints

TABLE VI
INFORMATION ABOUT THE HEALTHY VOLUNTEERS (HV)

ID-HV Age Sex Height (cm) Weight (kg)

N1 22 F 156 47

N2 22 F 160 52

N3 22 M 179 74

N4 23 M 180 70

N5 54 F 160 80

All participants were sitting with their backs straight and
motionless for the study. Two different tests were carried out.
The first recording lasted exactly 1 minute, while the second
test lasted 4 minutes. In the first test, participants were told to
perform deep breaths at a regular pace, while in the second
test, the measurements were recorded in a resting state. The
participants were informed to breath normally and not to talk
during the measurement. No other instructions were given to
the subjects to regulate the rate or depth of their breaths. In
the second experiment, participants were asked to sit down
and stay quite 15 minutes before the measurement [1].

C. Results

During the measurement, all volunteers were sitting down
with the backs against the backrest. In the presentation of
the results, the roll angle was used since it presents the most
reliable values.

D. Experiment 1: Concept Validation

This experiment was performed at ETSIDI-UPM Mechatron-
ics Lab with volunteers from G1 group. Some hypothesis to
validated:

• Number and position of inertial sensors (see Section 2).
• Reliability of Bluetooth communication considering the

number of sensors.
• Reliability of each sensor to measure respiratory dynamics.
• Autonomy and data storage capabilities.
• Software testing.
After each sensor was placed in the target position, the

volunteer was encouraged to deeply inhale and exhale during
one minute. At the same time, the respiratory rate was manually
counted by the number of the chest rise. In order to proceed
with the comparison, the respiratory rate of each IMU was
computed (Fig. 3). Respiratory rate (manual and automatic)
are summarized in Table VIII.

We defined ki, with i = 1, ...,m the set of the roll angles
of an inertial sensor during a measurement procedure.

TABLE VII
DAILY LIFE ACTIVITY (HV)

ID-HV Smoker Laboral activity Recreative activity Sport

N1 No Student X Yoga

N2 No Student No No

N3 Yes (2 cigarettes per day) Student No No

N4 No Software engineer Read, sing Soccer, gym

N5 Yes (1/2 cigarettes per day) School monitor No Fitness
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TABLE VIII
RESPIRATORY RATE MEASUREMENT IN GROUP 1. COMPARISON BETWEEN MANUAL AND AUTOMATIC PROCEDURE.

Subject Chest (bpm) Diaphragm (bpm) Left (bpm) Right (bpm) Manual (bpm)

1 12 10 12 13 12

2 14 12 14 14 14

3 15 15 15 13 15

4 15 15 14 12 15

5 22 21 22 20 22

6 14 14 14 14 14

7 27 21 25 25 27

8 10 10 10 10 10

9 17 19 19 19 19

10 19 19 15 18 19

11 16 16 15 16 17

12 9 9 10 9 9

13 17 17 17 17 17

14 16 16 17 17 17

15 13 13 14 14 14

16 17 14 17 17 17

17 12 12 12 12 12

18 14 14 14 14 14

19 12 14 12 14 14

20 6 7 6 7 6

Mj and mj represent the sets of maximum and minimum
values of ki, respectively:

Mj = max(ki), j = 1, ..., n (1)

mj = min(ki), j = 1, ..., e (2)

We computed the absolute error for each sensor by (3):

eabs =

p
(RRm �RRa)2

n ⇤ (n� 1)
(3)

Where RRm is the manual count as it is done at clinical
setting, then it is considered the true value. RRa is computed by
the number of maximum peaks during 1 minute (See Fig. 3);

RRa =
t=60X

t=0

Mj (4)

The absolute errors are: echest = 0.0289 for the chest sensor,
ediap = 0.1368 for diaphragm sensor, eleft = 0.0316 for the
left sensor and eright = 0.0342 for the right sensor. Taking
into consideration the range of respiratory rate for healthy
volunteers, 12� 20 breaths per minute, any sensor can be used
to measure respiratory rate accuracy [6], [28].

Moreover, some volunteers were encouraged to simulate the
most common pattern of breathing Tachypnea, where RR >
20 breaths per minute, Bradypnea,where RR < 12 breaths per
minute and finally to hold-breath, where the inhaled air is kept off

some seconds [18]. Values measured by chest sensor are presented
in the Fig. 5. The reader is advised to consult the supplementary
material to view the data measured by the other inertial sensors,
which are noticeably affected by measurement noise.

E. Experiment 2: Post-COVID-19 patients measurement

Experiment 2 consists in measuring the respiratory dynamics
during 4 minutes to G2 and G3 groups. G2 was measured at
the COVID-19 patients association. Some extra hypothesis to
validated in this experiment are:

• Difference in the measurements given by each sensor.
• Difference in respiratory rate values between the groups.
• Difference in the breathing patterns of the groups.
The features that best describe the respiratory dynamics

are compared between groups: mean time of respiration, bt,
[sec], the mean of maximum peaks peakmax, [º], the mean
of minimum peaks peakmin, [º] and the respiratory frequency
bfreq , [bpm], that is the number of breaths per each minute.

By considering (1) and (2), the time of respiration is defined
as the elapsed time between two consecutive maximums
(minimum), that is:

bt = tKj+1 � tKj (5)

Where tKj and tKj+1 represents the time correlated to two
consecutive maximum or minimum peaks.
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(a) bradypnea

(b) Tachypnea

(c) breath

Fig. 5. Measurement of the most common breath patterns. Pattern recorded
by chest sensor.

Then, the mean time of respiration is defined as the mean
of all the time elapsed between two consecutive maximums
(minimum), that is:

bt =
1

n� 1

n�1X

i=1

bt (6)

Finally, the mean of maximum and minimum peaks are
defined with the following equations.

peakmax =
1

n

nX

j=1

Mj peakmin =
1

e

eX

j=1

mj (7)

Figures 6 to 9 show the measured features in both groups. As
it can be observed from these Figures, the proposed system is
able to capture differences in the respiratory dynamics between
groups. The four sensors measured alterations in the breath
behaviors, that is, the data recorded at each sensor shows
significant differences between them.

(a) Healthy volunteers

(b) Post-COVID-19 patients

Fig. 6. Mean value in time respiration features.

(a) Healthy volunteers

(b) Post-COVID-19 patients

Fig. 7. Mean value in maximum peak features.
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(a) Healthy volunteers

(b) Post-COVID-19 patients

Fig. 8. Mean value in minimum peak features.

(a) Healthy volunteers

(b) Post-COVID-19 patients

Fig. 9. Mean value in respiratory frequency features.

In order to compute the p� values, we just considered those
post-COVID-19 patients who had alteration in RR. After choosing
the data to be used, we applied an ANOVA test to compute the
level of significance for each feature and sensor. Related to RR
feature, the inertial sensor could be placed in any part of the
abdomen and thorax (pvalue < 0.001) as it was demonstrated in
experiment 1. To measure the minimum time of respiration, right
sensor is the most confident pvalue < 0.006, while chest sensor,
left and diaphragm sensors have pvalue < 0.01. It is recommended
to measure the minimum peaks using the right sensor, since it
shows the pvalue < 0.05, while no significant values were found
for the other sensors. For measuring the maximum peaks, right
sensor, again, seems to be best one with a pvalue < 0.05 and non
significant values were found for chest, diaphragm and left sensor.

IV. DISCUSSION

A. Reliability of inertial sensors to measure respiratory dy-
namics

According to the experimental results, the potential of using
multiple, wearable and ergonomic inertial sensors with blue-
tooth communication is suitable to measuring the respiratory
dynamics. However, some drawbacks were found and we
discuss about them below.

The position of each sensor needs to be deeply studied
and correlated with abdominal and thorax muscles synergies.
Although the sample size is a limitation in our study, the
experimental results evidence that some sensors are more
reliable than other to measure particular features of the
respiratory dynamics beyond the RR. However, for measuring
the RR, the inertial sensor could be placed in any abdominal or
thorax area. Moreover, we did not find any correlation between
the features measured by each sensor with the weight, height
or body mass index in healthy volunteers.

The first experiment allowed to verify whether the sensors
had enough sensitivity to measure the respiratory rate as well
as to measure the most typical abnormalities in the respiratory
pattern such us bradypnea and tachypnea. Moreover, a phase of
hold-respiration was also measured and, under this situation, we
determined the lower limit of the sensor’s confidence interval
for inhalation and exhalation stages of the breath. In Fig. 5 we
presented data recorded by the chest sensor. In the supplementary
material, the reader can observe that the other 3 sensors also
reproduce the pattern, however, in some cases with more noise.
The placement of these sensors may be related to the anatomy
and fat distribution in the abdominal zone.

Although working correctly, the bluetooth communication
is prone to failure with the time and battery consuming.
However, there are still some areas that should be studied
and improved before starting to use this method to measure
the respiratory dynamics. Indeed, this study is limited to a
controlled environment and low number of tests where subjects
were constrained to a motionless sitting position. In a real-
world scenario, additional filtering and processing would be
required to remove motion artifact and noises from the signal.

Despite of being one of its main advantages, the bluetooth
connection also introduces some difficulties when measuring.
The first one is the time required for having the four sensors
connected. This process is made manually (one by one),
so the total time necessary for this activity increases to
almost one minute. Additionally, when the last sensor becomes
ready to start the measuring process, the first one has been
bound for some seconds with the risk of not having the four
sensors starting the measurement at the same exact moment.
Furthermore, the BLE signal is weak with the clothes occlusion,
which is a great limitation to measure respiratory dynamic in
daily life, as well as the low autonomy of the system that is
limited to 4-5 hours maximum.

Another limitation of measuring the respiratory dynamics
with inertial sensors is the fact that the anatomy of men and
women is different, specially referring to the fat distribution.
Women have more body fat than men, which provokes that the
movement done by the trunk while breathing varies between
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both sexes, specially in the chest area, where the distribution
and the quantity of fat is different and superior in female.

This idea of fat distribution affecting the measurements is
also relevant for people suffering obesity. When measuring
these patients, the signal obtained is not as precise as with the
rest of subjects due to the influence of the fat when performing
the breathing movement.

For the experiments performed, the sensors were fixed using
surgical tape, but in some cases the sensors did not stay still
and were not completely fixed to the skin so the data obtained
needed to be filtered to remove non real movements. To prevent
this unwanted activity some artifacts like elastic bands, belts
or suits should be developed to stick the sensor directly to the
skin and collected data from the real movement.

B. Reliability of inertial sensors to measure alterations in
respiratory dynamics under disease condition

Rapid breathing can be the result of anything from anxiety or
asthma, to a lung infection or heart failure. Therefore to validate
our proposal to measuring respiratory dynamics, patients
diagnosed with post-COVID-19 condition were measured. As
it is well know, one of the main clinical picture is pneumonia.
However, in this proof of concept, we included three patients
who did not suffered pneumonia during the disease (see Table
IV) and one of them with subjective breathing problem in
post-COVID-19 stage (see Table V).

The respiratory dynamics were measured during four minutes
and results were compared with the control group, G3. By
analyzing the results given in Figs. 6 to 9, patients who suffered
pneumonia during the disease still had breathing problems and
the respiratory rate was in the range of tachypnea, similarly to
the patient who reported breathing problem in the post-COVID-
19 stage. Furthermore, these high respiratory rate values were
usually indicative that the ability of the subject to get oxygen
into the blood and get carbon dioxide out becomes less efficient,
causing the number of breaths per minute to increase.

On the other hand, by analyzing the peaks of the breathing
graphs, it was found that post-COVID-19 subjects did not take
such deep breaths when compared to healthy subjects, since
the amplitudes of their peaks were lower, on average.

The differences in the respiratory dynamics in patients and
control group was captured by the system. By comparing each
sensor in both groups, we found significant differences that
were related with the long-term consequences of the COVID-19
condition, even when the patient did not suffer from pneumonia.
In this case, the alteration of the breath was not necessarily
related with lung problems.

While the results presented are promising, better charac-
terization and understanding of the reliability of the system
is still needed before it can be used at a clinical level. This
validation would be quite relevant, since it would facilitate the
monitoring of normal and high-risk patients in a non-invasive
way (post-COVID-19 condition, asthma, or chronic obstructive
pulmonary disease, among others).

V. CONCLUSIONS

In this article, we have presented a novel concept to measure
the respiratory dynamics using four wireless inertial sensors.

We validated it by two different experiments, the first one
aimed to automatize the current manual procedure at clinical
setting. The main conclusion was that a single sensor can
be used to measure the RR and, most important, it could be
placed in any area of the abdominal or thorax part. Moreover,
abnormal patterns of the respiration can be captured in a single
measurement. In this case, the chest sensor shows more reliable
results compared to the other sensors. One of the reasons may
be the factor that the chest sensor was placed in a more stable
zone minimizing the noise of the measuring.

In the second experiment, the main objective was to
demonstrate that inertial sensors have enough sensitivity to
capture alterations in respiratory dynamics. Post-COVID-19
patients were tested. The results demonstrated that there are
alterations in the respiratory pattern in all sensors compared
with the healthy volunteers.

The most relevant parameters of respiratory dynamics are
computed automatically by a software developed in this
research and they are conveniently presented to the medical staff
using a human-machine interface designed and implemented
under MatLab environment.

The main limitation of this study was the size of the groups
included in the experiments. However, taking in consideration
that it is a proof a concept, the results are promising and
suggest that further studies are necessary for the full validation
of the system.

In futures studies, issues related with autonomy of the
sensors, wireless communication, relation between muscle
synergies and data recorded should be studied deeply in order
to get a better understanding of the respiratory dynamics. Also,
an extended validation of the proposed system is needed also
in dynamic conditions, during daily activities, considering both
healthy subjects and patients with respiratory diseases.

In all experiments, we followed a strict protocol for cleaning
common areas and materials between each use, in order to
keep researchers and participants safe.

APPENDIX

A. Supplementary
The response of the four inertial sensors to different breathing

patterns, such as Bradypnea (Figures S1 and S2), Tachypnea
(Figures S3 and S4) and hold-respiration (Figures S5 and S6)
were shown in the supplementary information.
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SUPPLEMENTARY MATERIAL

BRADYPNEA PATTERN:

TACHYPNEA PATTERN:

HOLD-RESPIRATION PATTERN

Fig. S1. Inertial sensor placed on diaphragm

Fig. S3. Inertial sensor placed on diaphragm

Fig. S5. Inertial sensor placed on diaphragm Fig. S6. Inertial sensor placed on left (left) and right (right)

Fig. S2. Inertial sensor placed on left (left) and right (right)

Fig. S4. Inertial sensor placed on left (left) and right (right)


