Greenhouse Gas Emissions in Commercial Grills in the Metropolitan Area of the City of Veracruz, Mexico

Authors

DOI:

https://doi.org/10.29019/enfoqueute.1085

Keywords:

commercial grills, emissions, greenhouse gases

Abstract

The present work is an effort to determine the generation of greenhouse gases, including carbon dioxide, methane and nitrous oxide, from the cooking process that is developed for chickens, meats, ribs, hamburgers and pizzas, using firewood and coal as a source of thermal energy in the commercial grills of the metropolitan area of the City of Veracruz, which is made up of the municipalities of Veracruz, Boca del Rio, Medellin de Bravo, Jamapa and Manlio Fabio Altamirano, at Veracruz State, Mexico which as a whole They have a population of 882,011 inhabitants, where they exist of 430 commercial establishments of this type exists, making 275 visits to carry out interviews and surveys, showing that 74.18 % use charcoal and 25.81 % use firewood. Using emission factors and caloric indices, it was determined that a total of 2,739.99 tons/year of carbon dioxide equivalent is generated by consumption of firewood and 8,872.66 tons/year of carbon dioxide equivalent by consumption of coal and with a total of 11,612.65 tons/year of carbon dioxide equivalent for all commercial grills facilities, which are involved in constant climate change and the effects that this causes in this metropolitan area on the central coast of the Gulf of Mexico and that must be included in both regulations municipal and in the climate change agenda.

Downloads

Download data is not yet available.

References

[1] G. Hernández, “Emisiones de gases de efecto invernadero y sectores clave en Colombia,” El Trimestre Económico, vol. no. 350, 523-550, 2021. https://doi.org/10.20430/ete.v88i350.857

[2] H. Catalán-Alonso, “Impacto de las energías renovables en las emisiones de gases efecto invernadero en México. Problemas del Desarrollo,” Revista Latinoamericana de Economía, vol. 52, no. 204, 59-83, 2021. https://doi.org/10.22201/iiec.20078951e.2021.204.69611

[3] DOF (Ley General de Cambio Climático, Diario Oficial de la Federación del 6 de junio de 2012. Available: https://www.diputados.gob.mx/LeyesBiblio/pdf/LGCC.pdf

[4] GE, Ley Estatal de Mitigación y Adaptación ante los Efectos del Cambio Climático, 2013. Available: http://www.ordenjuridico.gob.mx/Documentos/Estatal/Veracruz/wo77450.pdf

[5] G, Pérez, Jorge M. Islas-Samperio, Genice K. Grande-Acosta and Fabio Manzini, "Socioeconomic and Environmental Aspects of Traditional Firewood for Cooking on the Example of Rural and Peri-Urban Mexican Households" Energies, vol. 15, no. 13, p. 4904. 2022. https://doi.org/10.3390/en15134904

[6] Instituto Nacional de Geografía y Estadística, Presentación de Resultados ENCEVI 2018. Available: https://www.inegi.org.mx/contenidos/programas/encevi/2018/doc/encevi2018_presentacion_resultados.pdf (accessed on 16 may 2024)

[7] A. Flammini, H. Adzmir, K. Karl and F. Tubiello, Quantifying greenhouse gas emissions from woodfuel used in households, 2022. https://doi.org/10.5194/essd-2022-390

[8] M. Doumecq, N. Jiménez-Escobar, D. Morales and A. Ladio, “Much more than firewood: woody plants in household well-being among rural communities in Argentina,” Journal of Ethnobiology, vol. 43, 2023.

https://doi.org/10.1177/02780771231176065

[9] M. Da Silva, I. Feitosa, R. Cruz, V. De Sá, P. De Medeiros and R. Da Silva, “Use of firewood for artisanal ceramic production in a context of forest scarcity in Northeastern Brazil,” Ethnobiology and Conservation, 12. 2023. https://doi.org/10.15451/ec2023-11-12.23-1-14

[10] K. Newell, R. P. Cusack, C. Kartsonaki, N. Chaudhary and O. P. Kurmi, Household air pollution and associated health effects in low and middle income countrieshousehold air pollution and associated health effects in low- and middle-income countries, 2022. https://doi.org/10.1016/B978-0-12-801238-3.11494-1

[11] M. Ahmed, C. Shuai, K. Abbas, F. Rehman and W. Khoso, “Investigating health impacts of household air pollution on woman's pregnancy and sterilization: Empirical evidence from Pakistan, India, and Bangladesh,” Energy, vol. 247, p. 123562, 2022. https://doi.org/10.1016/j.energy.2022.123562

[12] REN21. Renewables 2021. Global Status Report; REN21 Secretariat: Paris, France, 2021; ISBN 978-3-948393-03-8.

[13] A. Ghilardi, G. Guerrero and O. Masera, “Spatial analysis of residential fuelwood supply and demand patterns in Mexico using the WISDOM approach,” Biomass and Bioenergy, vol. 31, pp. 475-491, 2007. https://doi.org/10.1016/j.biombioe.2007.02.003

[14] A. Cimini and M. Moresi, “Environmental impact of the main household cooking systems - A survey,” Italian Journal of Food Science, vol 34, pp. 86-113, 2022. https://doi.org/10.15586/ijfs.v34i1.2170

[15] V. Lango-Reynoso, J. López-Spiegel, F. Lango-Reynoso, M. D. R. Castañeda-Chávez and J. Montoya-Mendoza, “Estimation of CO2 emissions produced by commercial grills in Veracruz, Mexico,” Sustainability, vol. 10, no. 2, p. 464, 2018. https://doi.org/10.3390/su10020464

[16] E. Díaz-Nigenda, W. Morales, A. Sandoval, H. Morales and S. Jiménez, “Emisiones generadas por el consumo de leña y carbón en la preparación de comida rápida,” Ecosistemas y Recursos Agropecuarios, 8, 2021. https://doi.org/10.19136/era.a8n2.2962

[17] SEDATU Metrópolis de México 2020. Secretaría de Desarrollo Agrario, Territorial y Urbano. Gobierno de México, 2021. https://www.gob.mx/cms/uploads/sedatu/MM2020_06022024.pdf

[18] Instituto Nacional de Ecología y Cambio Climático INECC, “Metodo-logía para el cálculo de emisiones de gases de efecto invernadero,” 2022 Available: https://www.gob.mx/cms/uploads/attachment/file/552726/MetodologiaIPCC180520.pdf

[19] M. A. Susunaga-Miranda, B. Ortiz Muñiz, B. M. Estévez-Garrido, R. M. Susunaga-Estévez, M. Díaz-González and O. P. Castellanos-Onorio, “Greenhouse gas emissions by the biogas from the abandoned solid waste final disposal site in city of Veracruz, Mexico,” Enfoque UTE, vol. 14, no. 4, pp. 1-8, 2023. https://doi.org/10.29019/enfoqueute.988

[20] A. Benoist, C. Lanvin, O. Lefebvre, C. Godard, H. Ouedraogo. M. Riesgo Saives, P. Martz, S. Ringeissen and J. Blin, “Better practices for including traditional firewood in LCA: Lessons from a shea butter case study in Burkina Faso,” Environmental Impact Assessment Review, vol. 105, p. 107414, 2024. ISSN 0195-9255, https://doi.org/10.1016/j.eiar.2024.107414

[21] El sitio avícola, “Producción, comercio y consumo avícola de México para 2023 y 2024,” El sitio avícola, 2023 Available: https://www.elsitioavicola.com/poultrynews/34470/produccian-comercio-y-consumo-avacola-de-maxico-para-2023-y-2024/

[22] M. Piochi, G. Cabrino and L. Torri, “Effects of different woods in barbecuing: Consumers’ sensory perception and liking of grilled chicken meat,” Food Research International, vol. 163, p. 112295, 2022. https://doi.org/10.1016/j.foodres.2022.112295

[23] F. Melo, “La huella de carbono de los alimentos,” Statista, 2022. Available: https://es.statista.com/grafico/28549/emisiones-de-gases-de-efecto-invernadero-por-kilogramo-de-alimentos-y-bebidas-seleccionados/

[24] T. Saxena, A. Sahgal, R. Gupta, N. Mehra and L., “Arora coral bleaching: causes, mechanism, consequences, resilience and perspective,” International Journal of Ecology and Environmental Sciences, vol. 49, 2023. https://doi.org/10.55863/ijees.2023.2717

[25] R. Cabaña, F. Palacios, and S. Espinosa, “Impactos y adaptación al cambio climático en el Puerto de Veracruz,” Rumbos TS, año X, no. 12, pp. 119-129, 2015. Available: https://www.researchgate.net/publication/309791597_IMPACTOS_Y_ADAPTACION_AL_CAMBIO_CLIMATICO_EN_IMPACTS_AND_ADAPTATION_TO_CLIMATE_CHANGE_IN_VERACRUZ

Downloads

Published

2025-01-01

How to Cite

Susunaga-Miranda, M. A., Rodríguez-Molina, B., Estévez-Garrido, B. M., Díaz-González, M., Castellanos-Onorio, O. P., & Mejía Pérez, J. F. (2025). Greenhouse Gas Emissions in Commercial Grills in the Metropolitan Area of the City of Veracruz, Mexico. Enfoque UTE, 16(1), 38–44. https://doi.org/10.29019/enfoqueute.1085

Issue

Section

Miscellaneous