Bioremediation of water contaminated with motor oil by biological surfactants produced by Streptococcus thermophilus, using cheese whey as a carbon source

Authors

DOI:

https://doi.org/10.29019/enfoqueute.1094

Keywords:

biosurfactants, Streptococcus thermophilus, bioremediation, cheese way valorization

Abstract

The hydrocarbons that contaminate water are difficult to remove, among other things, due to their hydrophobic nature. A surfactant is one way to facilitate contact between the treatment agents. This research prepared a biological surfactant from whey fermentation through Streptococcus thermophilus bacteria. To optimize its production, a complete factorial design was carried out, varying the factors temperature (38, 40, and 42 °C) and time (24, 48, and 72 hours), and the response variable is the amount of surfactant produced. It was found that the highest performance was obtained at 40ºC and 48 hours. The biosurfactant was characterized to determine hemolytic activity, Parafilm, oil dispersion, emulsification index (63.64 %), and surface tension (52.7 mN/m). The ecotoxicity test with Daphnia magna confirmed that the biosurfactant is environmentally friendly. Finally, a bioremediation process was applied during the 45 days when more than 50 % engine oil removal was achieved.

Downloads

Download data is not yet available.

References

[1] S. Moore, “Lubricantes. ¿Cuánto lubricante hay en un barril de petróleo crudo?,” Lubes’N’Greases. Accessed: Apr. 16, 2024. [Online]. Available: https://www.lubesngreases.com/factbook/fbweb/

[2] A. Jurado, “Contaminación y manejo de aceites lubricantes usados,” Hoy en La Salle. Accessed: Apr. 17, 2024. [Online]. Available: https://hoy.lasalle.mx/contaminacion-y-manejo-de-aceites-lubricantes-usados/

[3] S. S. Mosquera Romero and J. D. Serrano Mena, “Biorremediación de lodos de una planta regeneradora de Aceites Lubricantes Usados, recuperando el suelo para uso industrial.,” Tesis de grado, Escuela Superior Politécnica del Litoral, Guayaquil, 2014. [Online]. Available: https://www.dspace.espol.edu.ec/bitstream/123456789/54972/1/D-99352.pdf

[4] W. Fong Silva, E. Quiñonez Bolaños, and C. Tejeda Tovar, “Caracterización físico-química de aceites usados de motores para su reciclaje,” Prospectiva, vol. 15, no. 2, pp. 135-144, 2017.

[5] L. F. Barrios-Ziolo, J. Robayo-Gómez, S. Prieto-Cadavid, and S. A. Cardona-Gallo, “Biorremediación de Suelos Contaminados con Aceites Usados de Motor,” Revista CINTEX, vol. 20, no. 1, Art. no. 1, Aug. 2015.

[6] L. Vásconez, “Convenios en cinco ciudades del Ecuador para reciclar aceites usados,” El Comercio, Ecuador, 2018. Accessed: Jul. 06, 2023. [Online]. Available: https://www.elcomercio.com/actualidad/ecuador/convenios-ciudades-ecuador-reciclar-aceites.html

[7] D. I. Osman, S. K. Attia and A. R. Taman, “Recycling of used engine oil by different solvent,” Egyptian Journal of Petroleum, vol. 27, no. 2, pp. 221–225, Jun. 2018. https://doi.org/10.1016/j.ejpe.2017.05.010.

[8] Secretaría de Medio Ambiente y Recursos Naturales, “Norma Oficial Mexicana NOM-001-SEMARNAT-2021. Que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación.,” Diario Oficial de la Federación. Accessed: May 07, 2024. [Online]. Available: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0

[9] A. Vidales Olivo, M. Y. Leos Magallanes, and M. G. Campos Sandoval, “Extracción de Grasas y Aceites en los Efluentes de una Industria Automotriz,” Conciencia Tecnológica, vol. 40, pp. 29-34, 2010.

[10] Ministerio del Medio Ambiente, “Libro blanco del agua,” in Libro blanco del agua, España, 2000, pp. 205–206. Accessed: May 07, 2024. [Online]. Available: https://www.miteco.gob.es/es/agua/temas/planificacion-hidrologica/libro-blanco-del-agua.html

[11] Ministerio del Ambiente, “Anexo 1 del Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente: Norma de Calidad Ambiental y de descarga de efluentes al recurso agua,” 2015. [Online]. Available: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/Acuerdo-097.pdf

[12] I. C. Ossai, A. Ahmed, A. Hassan and F. S. Hamid, “Remediation of soil and water contaminated with petroleum hydrocarbon: A review,” Environmental Technology & Innovation, vol. 17, p. 100526, Feb. 2020 https://doi.org/10.1016/j.eti.2019.100526.

[13] A. Rodríguez-Gonzales, S. G. Zárate-Villarroe, and A. Bastida-Codina, “Biodiversidad bacteriana presente en suelos contaminados con hidrocarburos para realizar biorremediación,” Revista de Ciencias Ambientales, vol. 56, no. 1, pp. 178-208, Jun. 2022. https://doi.org/10.15359/rca.56/1.9

[14] H. Contreras and C. Carreño, “Eficiencia de la biodegradación de hidrocarburos de petróleo por hongos filamentosos aislados de suelo contaminado,” Revista Científica UNTRM: Ciencias Naturales e Ingeniería, vol. 1, no. 1, pp. 27-33, 2018.

[15] V. C. Jiménez Vélez, “Evaluación de bacterias y hongos potencialemente utilizables para la biorremediación de suelos contaminados con hidrocarburos,” Tesis de grado, Universidad Agraria del Ecuador, Guayaquil, 2020. [Online]. Available: https://cia.uagraria.edu.ec/Archivos/JIMENEZ%20VELEZ%20VILMA%20CECIBEL.pdf

[16] H. Y. El-Kassas and L. A. Mohamed, “Bioremediation of the textile waste effluent by Chlorella vulgaris,” The Egyptian Journal of Aquatic Research, vol. 40, no. 3, pp. 301-308, Jan. 2014, https://doi.org/10.1016/j.ejar.2014.08.003

[17] I. Rawat, R. Ranjith Kumar, T. Mutanda, and F. Bux, “Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production,” Applied Energy, vol. 88, no. 10, pp. 3411-3424, Oct. 2011. https://doi.org/ 10.1016/j.apenergy.2010.11.025.

[18] K. Larsdotter, “Wastewater treatment with microalgae-a literature review,” Vatten, vol. 62, no. 1, p. 31, 2006.

[19] V. Matamoros, L. X. Nguyen, C. A. Arias, V. Salvadó, and H. Brix, “Evaluation of aquatic plants for removing polar microcontaminants: A microcosm experiment,” Chemosphere, vol. 88, no. 10, pp. 1257–1264, Aug. 2012, https://doi.org/10.1016/j.chemosphere.2012.04.004

[20] D. Theuerkauff et al., “Wastewater bioremediation by mangrove ecosystems impacts crab ecophysiology: In-situ caging experiment,” Aquatic Toxicology, vol. 218, p. 105358, Jan. 2020. https://doi.org/10.1016/j.aquatox.2019.105358

[21] S. S. Cameotra and R. S. Makkar, “Biosurfactant-enhanced bioremediation of hydrophobic pollutants,” Pure and Applied Chemistry, vol. 82, no. 1, pp. 97-116, Jan. 2010. https://doi.org/10.1351/PAC-CON-09-02-10

[22] E. Z. Ron and E. Rosenberg, “Biosurfactants and oil bioremediation,” Current Opinion in Biotechnology, vol. 13, no. 3, pp. 249-252, Jun. 2002. https://doi.org/10.1016/S0958-1669(02)00316-6

[23] M. Pacwa-Płociniczak, G. A. Płaza, Z. Piotrowska-Seget and S. S. Cameotra, “Environmental Applications of Biosurfactants: Recent Advances,” Int J Mol Sci, vol. 12, no. 1, pp. 633-654, Jan. 2011. https://doi.org/10.3390/ijms12010633

[24] V. Frolich, “Evaluación del potencial uso de biosurfactantes producidos por la Pseudomona aeruginosa en la biorremediación de suelos destinados a la agricultura,” Trabajo de grado, Universidad de los Andes, 2021.

[25] C. N. Mulligan, “Environmental applications for biosurfactants,” Environmental Pollution, vol. 133, no. 2, pp. 183-198, Jan. 2005. https://doi.org/10.1016/j.envpol.2004.06.009

[26] E. Eras-Muñoz, A. Farré, A. Sánchez, X. Font, and T. Gea, “Microbial biosurfactants: a review of recent environmental applications,” Bioengineered, vol. 13, no. 5, pp. 12365-12391, May 2022, doi: https://doi.org/10.1080/21655979.2022.2074621

[27] I. Araujo et al., “Surfactantes biológicos en la biorremediación de aguas contaminadas con crudo liviano,” Interciencia, vol. 33, no. 4, pp. 245-250, Apr. 2008.

[28] L.-M. Whang, P.-W. G. Liu, C.-C. Ma, and S.-S. Cheng, “Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil,” Journal of Hazardous Materials, vol. 151, no. 1, pp. 155-163, Feb. 2008. https://doi.org/10.1016/j.jhazmat.2007.05.063

[29] S. Skanda, P. S. J. Bharadwaj, S. Kar, V. Sai Muthukumar, and B. S. Vijayakumar, “Bioremoval capacity of recalcitrant azo dye Congo red by soil fungus Aspergillus arcoverdensis SSSIHL-01,” Bioremediation Journal, vol. 27, no. 1, pp. 32-43, Jan. 2023. https://doi.org/ 10.1080/10889868.2021.1984198

[30] C. Menacho et al., “Evaluation of some selected antibiotics and dyes removal by fungi isolated from wastewater sludge,” Bioremediation Journal, vol. 0, no. 0, pp. 1-17, 2024. https://doi.org/10.1080/10889868.2024.2335909

[31] O. Santos, “Detección e Identificación de Biosurfactantes y/o Bioemulsificantes producidos por Aislados Bacterianos asociados a una Fosa Petrolera de la Faja Petrolífera del Orinoco,” Tesis de grado, Univrsidad Central de Venezuela, Caracas, 2017. [Online]. Available: http://saber.ucv.ve/bitstream/10872/16817/1/TEG%20Oriana%20Santos%20Mayo%202017.pdf

[32] Z. Alkan, Z. Ergi̇Nkaya, G. Konuray, and E. Ünal Turhan, “Production of biosurfactant by lactic acid bacteria using whey as growth medium,” Turk J Vet Anim Sci, vol. 43, no. 5, pp. 676-683, Oct. 2019. https://doi.org/10.3906/vet-1903-48.

[33] C. Di Martino, “Estudio de bacterias del género Pseudomonas en la degradación de hidrocarburos y síntesis de biosurfactantes: análisis del efecto de los polihidroxialcanoatos,” Tesis doctoral, Universidad de Buenos Aires, Buenos Aires, 2015. [Online]. Available: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5752_DiMartino.pdf

[34] INEN, “NTE INEN 834:2013. Agentes surfactantes. Determinación de las tensiones interfacial y superficial,” 2013, Instituto Ecuatoriano de Normalización. [Online]. Available: https://www.normalizacion.gob.ec/buzon/normas/nte_inen_834-1.pdf

[35] V. Pinos-Velez, G. S. Araujo, P. Echeverria, M. Abril, S. Acosta, I. Cipriani, G. M. Moulatlet and M.V. Capparelli, “Acute and chronic ecotoxicity of daphnia magna exposed to ash leachate from the Cotopaxi Volcano, Ecuador | Bulletin of Environmental Contamination and Toxicology,” Bulletin of Environmental Contamination and Toxicology, vol. 113, no. 37, pp. 1-8, 2024, https://doi.org/10.1007/s00128-024-03946-2

[36] V. Pinos-Vélez, G. Araujo, G. M. Moulatley, A. Perez, I. Cipriani, P. Tripialdi and M. Capparelli, “Acute toxicity of daphnia magna neonates exposed to single and composite mixtures of four emerging contaminants,” Bull Environ Contam Toxicol, vol. 110, no. 1, p. 14, 2023. https://doi.org/10.1007/s00128-022-03663-8

[37] L. Mesa M, J. Falcón, Y. Ruiz, R. Arias and J. Pérez, “Monitoreo de la contaminación de agua por hidrocarburos en el espejo de la bahía de Santiago de Cuba,” Revista Boliviana de Química, vol. 36, no. 4, pp. 157-172, Oct. 2019.

[38] J. García, “Técnicas moleculares aplicadas a la caracterización y estudio de la supervivencia de bacterias lácticas del yogurt,” Doctoral, Universidad Politécnica de Valencia, Valencia, 2010. [Online]. Available: https://m.riunet.upv.es/bitstream/handle/10251/14010/tesisUPV3431.pdf?sequence=6&isAllowed=y

[39] J. M. Rodríguez, M. A. Serna, B. K. Uribe and M. X. Quintanilla, “Aplicación de la metodología de superficie de respuesta para evaluar el efecto de la concentración de azucar y de cultivos iniciadores comerciales sobre la cinética de fermentación del Yogurt.,” Revista Mexicana de Ingeniería Química, vol. 13, no. 1, pp. 213-225, 2014.

[40] R. R. Montesdeoca and K. Piloso, “Evaluación físicoquímica del lactosuero obtenido del queso fresco pasteurizado producido en el taller de procesos lácteos en la ESPAM ‘MFL,’” Revista Científica de Ciencia y Tecnología El Higo, vol. 10, no. 1, 2020. https://doi.org/10.5377/elhigo.v10i1.9921.

[41] INEN, “NTE INEN 2594:2011. Suero de leche líquido. Requisitos,” 2011.

[42] E. Vasileva-Tonkova and V. Gesheva, “Biosurfactant Production by Antarctic Facultative Anaerobe Pantoea sp. During Growth on Hydrocarbons,” Current Microbiology, vol. 54, pp. 136-141, 2007. https://doi.org/ 10.1007/s00284-006-0345-6.

[43] L.-M. Whang, P.-W. G. Liu, C.-C. Ma and S.-S. Cheng, “Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil,” Journal of Hazardous Materials, vol. 151, no. 1, pp. 155-163, Feb. 2008. https://doi.org/10.1016/j.jhazmat.2007.05.063.

[44] A. L. Severo Domínguez, M. Á. Hernández Rivera, R. L. Fócil Monterrubio and M. E. Ojeda Morales, “Estudio de la producción de biosurfactantes obtenidos de bacterias fijadoras de nitrógeno y degradadoras de petróleo,” Emerging Trends in Education, vol. 21, no. 41, p. 4, 2015.

[45] E. P. Martínez and J. A. Osorio, “Estudios preliminares para la producción de un biosurfactante bacteriano activo contra Phytophthora infestans (Mont.) De Bary,” Carpoica. Ciencia y tecnologia Agropecuaria, vol. 8, no. 2, pp. 5-16, 2007.

[46] M. R. Barrionuevo, “Producción de biosurfactantes bacterianos para su uso en procesos de biotratamiento de efluentes industriales con contenido en metales,” Tesis doctoral, Universidad de Buenos Aires, Buenos Aires, 2017.

[47] N. H. Youssef, K. E. Duncan, D. P. Nagle, K. N. Savage, R. M. Knapp and M. J. McInerney, “Comparison of methods to detect biosurfactant production by diverse microorganisms,” J Microbiol Methods, vol. 56, no. 3, pp. 339-347, Mar. 2004. https://doi.org/10.1016/j.mimet.2003.11.001

[48] M. A. Daniel, M. R. Barrionuevo, S. R. Doyle and D. L. Vullo, “Kinetics of Pseudomonas veronii 2E biofilm development under different nutritional conditions for a proper bioreactor design,” Biochemical Engineering Journal, no. 105, pp. 150-158, Jan. 2016. https://doi.org/10.1016/j.bej.2015.09.001

[49] M. Martínez Aguilar, “Obtención de un biosurfactante para el recobro mejorado de petróleo,” Universidad Nacional de Colombia, Medellín, 2014. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/53556/1014217302.2015.pdf?sequence=1&isAllowed=y

[50] E. Jurado, M. Fernández, J. Núñez, M. Lechuga and F. Ríos, “Ecotoxicity of anionic surfactants AKYPO,” WIT Transactions on Ecology and the Environment. Ecosystems and Sustainable Development VIII, vol. 144, pp. 497-505, 2011. https://doi.org/10.2495/ECO110431

[51] J. García, D. Peñafiel Heredia, and R. Rodríguez, “Bioremediación de hidrocarburos en aguas residuales con cultivo mixto de microorganismos: caso Lubricadora Puyango,” Enfoque UTE, vol. 10, no. 1, pp. 185-196, Mar. 2019. https://doi.org/10.29019/enfoqueute.v10n1.312

[52] Q. Chen, Y. Li, M. Liu, B. Zhu, J. Mu and Z. Chen, “Removal of Pb and Hg from marine intertidal sediment by using rhamnolipid biosurfactant produced by a Pseudomonas aeruginosa strain,” Environmental Technology & Innovation, vol. 22, p. 101456, May 2021. https://doi.org/10.1016/j.eti.2021.101456.

[53] A. Abalos, Y. Barrios, O. Rodríguez, M. I. López, H. F. Toledo, and I. A. Aguilera, “Surfactante microbiano para la biorrestauración de ecosistemas impactados con hidrocarburos y metales pesados,” Anales de la Academia de Ciencias de Cuba, vol. 14, no. 4, Art. no. 4, Nov. 2024.

Downloads

Published

2024-12-17

How to Cite

Chumi-Pasato, A., Rueda-Vinces, M., Larriva, G., & Pinos, V. (2024). Bioremediation of water contaminated with motor oil by biological surfactants produced by Streptococcus thermophilus, using cheese whey as a carbon source. Enfoque UTE, 17–25. https://doi.org/10.29019/enfoqueute.1094

Issue

Section

Miscellaneous