Una revisión bibliográfica sobre los sistemas inalámbricos de transmisión de datos y energía
DOI:
https://doi.org/10.29019/enfoqueute.1167Palabras clave:
Componentes, IoT, Transmisión inalámbrica de energía y datos, Acoplamiento InductivoResumen
En este documento se revisan los modelos de transferencia inalámbrica de energía (WPT), partiendo desde una clasificación obtenida con base en diferentes artículos publicados en repositorios científicos. El objetivo es desarrollar una base de datos nueva, completa, detallada y actualizada de información, la cual nos provee de los métodos y componentes óptimos para los modelos WPT, tabular los datos y determinar las mejores características en función de WPT implementado: Inductivo, Capacitivo, Microondas, láser, ultrasónico, RF, lo cual podrá ser considerado para una mayor investigación en busca de mejorar los diseños de Sistemas WPT. La metodología se divide en cinco etapas: revisión literaria, clasificación de métodos WPT, selección de principales atributos, análisis de resultados y documentación. Finalmente, con la información recopilada se diseñó una página web para que diferentes investigadores e interesados en la WPT puedan consultar de forma rápida.
Descargas
Referencias
[1] T. Helgesen and M. Haddara, “Wireless power transfer solutions for ‘things’ in the internet of things,” in Proceedings of the Future Technologies Conference (FTC) 2018, K. Arai, R. Bhatia, and S. Kapoor, Eds. Cham: Springer International Publishing, 2019, pp. 92–103. [Online]. Available: Document Link
[2] K. Detka and K. Górecki, “Wireless power transfer—a review,” Energies, vol. 15, no. 19, 2022. [Online]. Available: Document Link
[3] A. Laha, A. Kalathy, M. Pahlevani, and P. Jain, “A comprehensive review on wireless power transfer systems for charging portable electronics,” Eng., vol. 4, no. 2, pp. 1023–1057, 2023. [Online]. Available: Document Link
[4] A. Baraskar, H. Chen, Y. Yoshimura, S. Nagasaki, and T. Hanada, “Verify the Wireless Power Transmission in Space using Satellite to Satellite System,” Int. J. Emerg. Technol., vol. 12, no. 2, pp. 110–118, 2021. [Online]. Available: Document Link
[5] A. Triviño, J. M. González-González, and J. A. Aguado, “Wireless power transfer technologies applied to electric vehicles: A review,” Energies, vol. 14, no. 6, 2021. [Online]. Available: Document Link
[6] J. Huang, Y. Zhou, Z. Ning, and H. Gharavi, “Wireless power transfer and energy harvesting: Current status and future prospects,” IEEE Wireless Commun., vol. 26, no. 4, pp. 163–169, 2019. [Online]. Available: Document Link
[7] Y. Yao, P. Sun, X. Liu, Y. Wang, and D. Xu, “Simultaneous wireless power and data transfer: A comprehensive review,” IEEE Trans. Power Electron., vol. 37, no. 3, p. 3650, 2022. [Online]. Available: Document Link
[8] S.-W. Dong, X. Li, X. Yu, Y. Dona, H. Cui, T. Cui, Y. Wang, and S. Liu, “Hybrid mode wireless power transfer for wireless sensor network,” in 2019 IEEE Wireless Power Transfer Conference (WPTC), 2019, pp. 561–564. [Online]. Available: Document Link
[9] D. Wang, J. Zhang, S. Cui, Z. Bie, F. Chen, and C. Zhu, “The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives,” Renewable Sustainable Energy Rev., vol. 189, p. 113910, 2024. [Online]. Available: Document Link
[10] F. Zhao, D. Inserra, G. Wen, J. Li, and Y. Huang, “A high-efficiency inverse class-f microwave rectifier for wireless power transmission,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 11, pp. 725–728, 2019. [Online]. Available: Document Link
[11] B. T. Malik, V. Doychinov, A. M. Hayajneh, S. A. R. Zaidi, I. D. Robertson, and N. Somjit, “Wireless power transfer system for batteryless sensor nodes,” IEEE Access, vol. 8, pp. 95878–95887, 2020. [Online]. Available: Document Link
[12] D. Belo, D. C. Ribeiro, P. Pinho, and N. Borges Carvalho, “A selective, tracking, and power adaptive far-field wireless power transfer system,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 9, pp. 3856–3866, 2019. [Online]. Available: Document Link
[13] M. Z. Chaari and S. Al-maadeed, “Wireless power transmission for the internet of things (IoT),” in 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 2020, pp. 549–554. [Online]. Available: Document Link
[14] W. Hao, T. Hui, N. Gaofeng, and P. Zhao, “Wireless powered mobile edge computing for industrial internet of things systems,” IEEE Access, vol. 8, pp. 101539–101549, 2020. [Online]. Available: Document Link
[15] X. He, S. Liu, J. Wu, Y. Feng, R. Wang, W. Li, and W. Weng, “Wireless power and information dual transfer system via magnetically coupled resonators,” Commun. Eng., vol. 3, no. 1, p. 8, 2024. [Online]. Available: Document Link
[16] S. K. Oruganti, A. Khosla, and T. G. Thundat, “Wireless power-data transmission for industrial internet of things: Simulations and experiments,” IEEE Access, vol. 8, pp. 187965–187974, 2020. [Online]. Available: Document Link
[17] J. I. d. O. Filho, A. Trichili, B. S. Ooi, M.-S. Alouini, and K. N. Salama, “Toward self-powered internet of underwater things devices,” IEEE Commun. Mag., vol. 58, no. 1, pp. 68–73, 2020. [Online]. Available: Document Link
[18] W. Zhou and K. Jin, “Power control method for improving efficiency of laser-based wireless power transmission system,” IET Power Electron., vol. 13, no. 10, pp. 2096–2105, 2020. [Online]. Available: Document Link
[19] D. Yao, B. Gao, H. Qiang, X. Wang, K. Wen, and D. Wang, “Laser wireless power transfer and thermal regulation method driven by transient laser grating,” AIP Adv., vol. 12, no. 10, p. 105001, 2022. [Online]. Available: Document Link
[20] H. Yigit and A. R. Boynuegri, “Pulsed laser diode based wireless power transmission application: Determination of voltage amplitude, frequency, and duty cycle,” IEEE Access, vol. 11, pp. 54544–54555, 2023. [Online]. Available: Document Link
[21] Y. Park and D. Youii, “kw-class wireless power transmission based on microwave beam,” in 2020 IEEE Wireless Power Transfer Conference (WPTC), 2020, pp. 5–8. [Online]. Available: Document Link
[22] B. Hu et al., “A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier,” Energy Reports, vol. 7, pp. 1154–1161, 2021. [Online]. Available: Document Link
[23] W. Liu, C. Hu, and L. Xiang, “A multimodal modulation scheme for electric vehicles’ wireless power transfer systems, based on secondary impedance,” Electronics, vol. 11, no. 19, 2022. [Online]. Available: Document Link
[24] D. M. Nguyen, N. D. Au, and C. Seo, “A microwave power transmission system using sequential phase ring antenna and inverted class F rectenna,” IEEE Access, vol. 9, pp. 134163–134173, 2021. [Online]. Available: Document Link
[25] Y. Shi, Y. Fan, Y. Li, L. Yang, and M. Wang, “An efficient broadband slotted rectenna for wireless power transfer at LTE band,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 814–822, 2019. [Online]. Available: Document Link
[26] S. Nag, A. Koruprolu, S. M. Saikh, R. Erfani, and P. Mohseni, “Autoresonant tuning for capacitive power and data telemetry using flexible patches,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 10, pp. 1804–1808, Oct. 2020. [Online]. Available: Document Link
[27] A. Okba, A. Takacs, and H. Aubert, “Compact rectennas for ultra-low-power wireless transmission applications,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 5, pp. 1697–1707, May 2019. [Online]. Available: Document Link
[28] F. Ferreira, M. Feldman, G. Bulla, V. Brusamarello, and I. Müller, “Compact near field wireless energy transfer systems using defected ground structures,” IEEE Journal of Microwaves, vol. 3, no. 3, pp. 951–961, Jul. 2023. [Online]. Available: Document Link
[29] M. Poveda-García, J. Oliva-Sánchez, R. Sanchez-Iborra, D. Cañete-Rebenaque, and J. L. Gomez-Tornero, “Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming,” IEEE Access, vol. 7, pp. 8081–8094, 2019. [Online]. Available: Document Link
[30] S. A. Rotenberg, S. K. Podilchak, P. D. H. Re, C. Mateo-Segura, G. Goussetis, and J. Lee, “Efficient rectifier for wireless power transmission systems,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1921–1932, May 2020. [Online]. Available: Document Link
[31] N. Ha-Van, Y. Liu, P. Jayathurathnage, C. R. Simovski, and S. A. Tretyakov, “Cylindrical transmitting coil for two-dimensional omnidirectional wireless power transfer,” IEEE Trans. Ind. Electron., vol. 69, no. 10, pp. 10045–10054, 2022. [Online]. Available: Document Link
[32] J. H. Park, D. In Kim, and K. W. Choi, “Experiments and modeling of 5.8 GHz microwave wireless power transfer with multiple antennas,” in 2020 IEEE Wireless Power Transfer Conference (WPTC), Nov. 2020, pp. 115–118. [Online]. Available: Document Link
[33] M. Bisschop and W. A. Serdijn, “Resistive matching using an AC boost converter for efficient ultrasonic wireless power transfer,” in 2019 IEEE Wireless Power Transfer Conference (WPTC), 2019, pp. 620–623. [Online]. Available: Document Link
[34] M. Najjarzadegan, E. H. Hafshejani, and S. Mirabbasi, “An open-loop double-carrier simultaneous wireless power and data transfer,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 66, no. 5, pp. 823–827, May 2019. [Online]. Available: Document Link
[35] R. Guida, E. Demirors, N. Dave, and T. Melodia, “Underwater ultrasonic wireless power transfer: A battery-less platform for the internet of underwater things,” IEEE Trans. Mobile Comput., vol. 21, no. 5, pp. 1861–1873, May 2022. [Online]. Available: Document Link
[36] Y. Yao, C. Tang, S. Gao, Y. Wang, J. M. Alonso, U. K. Madawala, and D. Xu, “Analysis and design of a simultaneous wireless power and data transfer system featuring high data rate and signal-to-noise ratio,” IEEE Trans. Ind. Electron., vol. 68, no. 11, pp. 10761–10771, Nov. 2021. [Online]. Available: Document Link
[37] J.-G. Kim, G. Wei, M.-H. Kim, H.-S. Ryo, and C. Zhu, “A wireless power and information simultaneous transfer technology based on 2FSK modulation using the dual bands of series–parallel combined resonant circuit,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2956–2965, Mar. 2019. [Online]. Available: Document Link
[38] Y. Li, X. Li, and X. Dai, “A simultaneous wireless power and data transmission method for multi-output WPT systems: Analysis, design, and experimental verification,” IEEE Access, vol. 8, pp. 206353–206359, 2020. [Online]. Available: Document Link
[39] L. Wang, C. Tjoe, B. Xu, and P. Yue, “A dual-resonance matching circuit for magnetic resonance wireless power transfer systems,” in 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), Oct. 2019, pp. 94–95. [Online]. Available: Document Link
[40] B. Luo, T. Long, L. Guo, R. Dai, R. Mai, and Z. He, “Analysis and design of inductive and capacitive hybrid wireless power transfer system for railway application,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3034–3042, May 2020. [Online]. Available: Document Link
[41] R. Narayanamoorthi, “Modeling of capacitive resonant wireless power and data transfer to deep biomedical implants,” IEEE Trans. Components, Packaging and Manufacturing Technology, vol. 9, no. 7, pp. 1253–1263, Jul. 2019. [Online]. Available: Document Link
[42] G. K. Ijemaru, K. L.-M. Ang, and J. K. P. Seng, “Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges,” Int. J. Distributed Sensor Networks, vol. 18, no. 3, p. 15501477211067740, 2022. [Online]. Available: Document Link
[43] N. Shinohara, “Trends in wireless power transfer: WPT technology for energy harvesting, millimeter-wave/THz rectennas, MIMO-WPT, and advances in near-field WPT applications,” IEEE Microwave Magazine, vol. 22, no. 1, pp. 46–59, 2021. [Online]. Available: Document Link
[44] J.-H. Kim, Y. Lim, and S. Nam, “Efficiency bound of radiative wireless power transmission using practical antennas,” IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. 5750–5755, 2019. [Online]. Available: Document Link
[45] E. I. Shirokova, A. A. Azarov, and I. B. Shirokov, “The system of wireless energy transfer,” in 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Jan. 2019, pp. 1060–1064. [Online]. Available: Document Link
[46] Z. Xiong, R. Cai, X. Du, H. Du, and G. Xu, “Dynamic characteristics and stability of the photovoltaic cell under laser intensity or load disturbance in laser wireless power transmission system,” IEEE Access, vol. 11, pp. 104579–104592, 2023. [Online]. Available: Document Link
[47] C. Wei, S. Surappa, and F. L. Degertekin, “Experimental verification and design guidelines for efficient ultrasonic power transfer using capacitive parametric ultrasonic transducers,” in 2020 IEEE International Ultrasonics Symposium (IUS), 2020, pp. 1–4. [Online]. Available: Document Link
[48] M. B. Sidiku, E. M. Eronu, and E. C. Ashigwiuke, “A review on wireless power transfer: Concepts, implementations, challenges and mitigation schemes,” Nigerian Journal of Technology, vol. 39, no. 4, pp. 1206–1215, Oct. 2020. [Online]. Available: Document Link
[49] M. Song, P. Jayathurathnage, Zanganeh et al., “Wireless power transfer based on novel physical concepts,” Nature Electronics, vol. 4, no. 10, pp. 707–716, 2021. [Online]. Available: Document Link
[50] M. M. Arms, K. H. Truman-Jarrell, and C. W. Van Neste, “Investigating the interactions between capacitive wireless power transfer technology and concrete,” in 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Nov. 2020, pp. 218–222. [Online]. Available: Document Link
[51] G. Chen, Y. Sun, J. Huang, B. Zhou, F. Meng, and C. Tang, “Wireless power and data transmission system of submarine cable–inspecting robot fish and its time–sharing multiplexing method,” Electronics, vol. 8, no. 8, 2019. [Online]. Available: Document Link
[52] V. F. Tseng, S. S. Bedair, and N. Lazarus, “Acoustic wireless power transfer with receiver array for enhanced performance,” in 2017 IEEE Wireless Power Transfer Conference (WPTC), 2017, pp. 1–4. [Online]. Available: Document Link
[53] Z. Yuan, P. Fu, G. Lu, and P. Cao, “Wireless power transfer system based on frequency and impedance matching hybrid adjustment against system detuning,” Journal of Physics: Conference Series, vol. 2108, no. 1, p. 012035, Nov. 2021. [Online]. Available: Document Link
[54] M. Zhumayeva, K. Dautov, M. Hashmi, and G. Nauryzbayev, “Wireless energy and information transfer in WBAN: A comprehensive state–of–the–art review,” Alexandria Engineering Journal, vol. 85, pp. 261–285, 2023. [Online]. Available: Document Link
[55] Z. Xiong, Y. Zhang, W. Y. B. Lim, J. Kang, D. Niyato, C. Leung, and C. Miao, “UAV–assisted wireless energy and data transfer with deep reinforcement learning,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 1, pp. 85–99, Mar. 2021. [Online]. Available: Document Link
[56] H. Zhang, N. Shlezinger, F. Guidi et al., “Near–field wireless power transfer for 6G internet–of–everything mobile networks: Opportunities and challenges,” 2021. [Online]. Available: Document Link
[57] R. González Ayestarán, G. León, M. R. Pino, and P. Nepa, “Wireless power transfer through simultaneous near–field focusing and far–field synthesis,” IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. 5623–5633, 2019. [Online]. Available: Document Link
[58] Y. Zhang and C. You, “SWIPT in mixed near- and far-field channels: Joint beam scheduling and power allocation,” 2023. [Online]. Available: Document Link
[59] X. Li, J. Hu, Y. Li, H. Wang, M. Liu, and P. Deng, “A decoupled power and data-parallel transmission method with four-quadrant misalignment tolerance for wireless power transfer systems,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 11531–11535, 2019. [Online]. Available: Document Link
[60] E. Shi, J. Zhang, S. Chen, J. Zheng, Y. Zhang, D. W. Kwan Ng, and B. Ai, “Wireless energy transfer in RIS-aided cell-free massive MIMO systems: Opportunities and challenges,” IEEE Communications Magazine, vol. 60, no. 3, pp. 26–32, 2022. [Online]. Available: Document Link
[61] M. Uysal, S. Ghasvarianjahromi, M. Karbalayghareh, P. D. Diamantoulakis, G. K. Karagiannidis, and S. M. Sait, “SLIPT for underwater visible light communications: Performance analysis and optimization,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6715–6728, Oct. 2021. [Online]. Available: Document Link
[62] I. Diaz, “Wireless power (and data) transfer,” [Online]. Available: Document Link
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Los Autores

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores retienen todos sus derechos (© copyright).
- Los autores retienen sus derechos de marca y patente, y también sobre cualquier proceso o procedimiento descrito en el artículo.
- Los autores retienen el derecho de compartir, copiar, distribuir, ejecutar y comunicar públicamente el artículo publicado en Enfoque UTE (por ejemplo, colocarlo en un repositorio institucional o publicarlo en un libro), siempre que se dé el reconocimiento de su publicación inicial en la revista Enfoque UTE.
- Los autores retienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen la fuente de publicación (autores del trabajo, revista, volumen, número y fecha).



