Characterization of energy consumption agents in the residential sector of Ecuador based on a national survey and geographic information systems for modelling energy systems
DOI:
https://doi.org/10.29019/enfoqueute.801Keywords:
Agent-based model, geographic information systems, investmentAbstract
The residential sector is an example of the challenges that arise when modelling the heterogeneity of the energy system to assess energy policy. Some of the characteristics that influence the supply and demand of energy in the residential sector are the type of consumption, household income, family composition, type of dwelling, the climatic zone of residence, among others. The objective of this research is to characterize the agents of energy consumption in the residential sector of Ecuador. To achieve this goal, this article presents a methodology that combines a national survey (online and door-to-door) with Geographic Information Systems (GIS). The survey allows defining the main motivations, investment objectives and decision method of the agents when renewing or maintaining home energy technologies. For this, the agents have been classified based on their income level. GIS allows the agents to be spatially located and to have an estimate of the population that belongs to each agent by income level. The results are presented by income level for each group of agents and the agents are geolocated, characterizing them spatially. The quantitative attributes of each agent are determined in order to be used in energy systems modelling.
Downloads
References
Andersen, J. (2015). Modelling and optimisation of renewable energy systems. (Doctoral dissertation, tesis doctoral, Aarhus University, Dinamarca,< http://pure. au. dk/portal/files/86807925/PhD_thesis_Jeanne_Andersen. pdf>[21/3/2016]).
Aguilera Ontiveros, A., & Posada Calvo, M.. (2017). Introducción al modelado basado en agentes: Una aproximación desde Netlogo. El Colegio de San Luis.
Bazurto, J. J. B., Falcones, V. A. M., Gámez, M. R., & Arvelo, M. G. V. (2019). Geographic information system for Manabí sustainable development. International Research Journal of Management, IT and Social Sciences, 6(6), 17–28. https://doi.org/10.21744/irjmis.v6n6.741
Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99 [Supplement 3], 7280–7287. https://doi.org/10.1073/pnas.082080899
Brown, D. (2012). Using a social survey to define preferences for residential locations in an agent-based model. Brookings. https://brook.gs/3BhMPBR
Brown, D. G., & Robinson, D. T. (1969). Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl. Ecology and Society Volumen 11 artículo. 46
Burg, V., Troitzsch, K. G., Akyol, D., Baier, U., Hellweg, S., & Thees, O. (2021). Farmer’s willingness to adopt private and collective biogas facilities: An agent-based modeling approach. Resources, Conservation and Recycling, 167, 105400. https://doi.org/10.1016/j.resconrec.2021.105400
Cantergiani, C., & Gómez Delgado, M. (2016). Diseño de un modelo basado en agentes para simular el crecimiento urbano en el Corredor del Henares (Comunidad de Madrid). Boletín de la Asociación de Geógrafos Españoles, 70(70). https://doi.org/10.21138/bage.2171
Cevallos-Sierra, J., & Ramos-Martin, J. (2018). Spatial assessment of the potential of renewable energy: The case of Ecuador. Renewable and Sustainable Energy Reviews, 81 (part 1), 1154–1165. https://doi.org/10.1016/j.rser.2017.08.015
Cepeda Susatama, K. D., Durango Ruíz, K. A., & Bohórquez Arévalo, L. (2017). Modelación y simulación basada en agentes como alternativa para el estudio de las organizaciones empresariales. Ingeniería Solidaria, 13(22), 103–119. https://doi.org/10.16925/in.v13i22.1838
Chappin, É. J. L., Nikolic, I., & Yorke-Smith, N. (2020). Agent-based modelling of the social dynamics of energy end use. In Energy and Behaviour: Towards a low carbon future (pp. 321–351). Elsevier. https://doi.org/10.1016/B978-0-12-818567-4.00029-6
Clarke, L., Eom, J., Marten, E. H., Horowitz, R., Kyle, P., Link, R., Mignone, B. K., Mundra, A., & Zhou, Y. (2018). Effects of long-term climate change on global building energy expenditures. Energy Economics, 72, 667–677. https://doi.org/10.1016/j.eneco.2018.01.003
Csutora, M., Zsoka, A., & Harangozo, G. (2021). The grounded survey: An integrative mixed method for scrutinizing household energy behavior. Ecological Economics, 182, 106907. https://doi.org/10.1016/j.ecolecon.2020.106907
Daniels, D. (2017, agosto 31). Overview of the National Energy Modeling System (NEMS). Presented at the University of Bergamo/Georgia Tech Environment and Sustainability Workshop. https://b.gatech.edu/3Jniogl
DeAngelis, D. L., & Diaz, S. G. (2019). Decision-making in agent-based modeling: A current review and future prospectus. Frontiers in Ecology and Evolution, 6(Jan), 237. https://doi.org/10.3389/fevo.2018.00237
Deller, D. (2018). Energy affordability in the EU: The risks of metric driven policies. Energy Policy, 119, 168–182. https://doi.org/10.1016/j.enpol.2018.03.033
E3MLab. (2014). TREMOVE Transport Model. http://www.e3mlab.eu
Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460(7256), 685–686. https://doi.org/10.1038/460685a
Fragkos, P., Fragkiadakis, K., Paroussos, L., Pierfederici, R., Vishwanathan, S. S., Köberle, A. C., Iyer, G., He, C.-M., & Oshiro, K. (2018). Coupling national and global models to explore policy impacts of NDCs. Energy Policy, 118, 462–473. https://doi.org/10.1016/j.enpol.2018.04.002
García-Gusano, D., Suárez-Botero, J., & Dufour, J. (2018). Long-term modelling and assessment of the energy-economy decoupling in Spain. Energy, 151, 455–466. https://doi.org/10.1016/j.energy.2018.03.102
García-Valdecasas Medina, J. I. (2011). La simulación basada en agentes: Una nueva forma de explorar los fenómenos sociales. Revista Española de Investigaciones Sociológicas, 136(136), 91–110. https://doi.org/10.5477/cis/reis.136.91
Gardumi, F., Shivakumar, A., Morrison, R., Taliotis, C., Broad, O., Beltramo, A., Sridharan, V., Howells, M., Hörsch, J., Niet, T., Almulla, Y., Ramos, E., Burandt, T., Balderrama, G. P., Pinto de Moura, G. N., Zepeda, E., & Alfstad, T. (2018). From the development of an open-source energy modelling tool to its application and the creation of communities of practice: The example of OSeMOSYS. Energy Strategy Reviews, 20, 209–228. https://doi.org/10.1016/j.esr.2018.03.005
Geng, Y., Zhao, H., Liu, Z., Xue, B., Fujita, T., & Xi, F. (2013). Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning. Energy Policy, 60, 820–826. https://doi.org/10.1016/j.enpol.2013.05.054
Geog.leeds. (n.d). Agent Based Modelling: Introduction. Recuperado en julio 11, 2021, de http://www.geog.leeds.ac.uk/courses/other/crime/abm/general-modelling/index.html
González, R., Treviño, E., Aguirre, O., Jiménez, J., Cantú, I., & Foroughbakhch R. (2004). Rodalización mediante sistemas de información geográfica y sensores remotos. Investigaciones geográficas, 53, 39–57. https://bit.ly/3uZKxX5
Guerrero Hoyos, B. G., Vélez Macías, F. D. J., & Morales Quintero, D. E. (2020). Energía eólica y territorio: Sistemas de información geográfica y métodos de decisión multicriterio en La Guajira (Colombia). Ambiente y Desarrollo, 23(44). https://doi.org/10.11144/Javeriana.ayd23-44.eets
Hall, L. M. H., & Buckley, A. R. (2016). A review of energy systems models in the UK: Prevalent usage and categorisation. Applied Energy, 169, 607–628. https://doi.org/10.1016/j.apenergy.2016.02.044
Harish, V. S. K. V., & Kumar, A. (2016). A review on modeling and simulation of building energy systems. Renewable and Sustainable Energy Reviews, 56, 1272–1292. https://doi.org/10.1016/j.rser.2015.12.040
Herbst, A., Toro, F., Reitze, F., & Jochem, E. (2012). Introduction to energy systems modelling. Swiss Journal of Economics and Statistics, 148(2), 111–135. https://doi.org/10.1007/BF03399363
Heredia, G. (2016). Análisis socioeconómico de la implementación de un servicio de microseguros para familia de bajos recursos en la ciudad de Quito a través de las organizaciones de la economía popular y solidaria [Universidad Internacional del Ecuador]. Repositorio UIDE. https://bit.ly/3uFZsFz
Himeur, Y., Alsalemi, A., Al-Kababji, A., Bensaali, F., Amira, A., Sardianos, C., Dimitrakopoulos, G., & Varlamis, I. (2021). A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects. Information Fusion, 72, 1–21. https://doi.org/10.1016/j.inffus.2021.02.002
Instituto Nacional de Estadística y Censos. (2014). Sistema Nacional de Información. https://sni.gob.ec/inicio
Instituto Nacional de Estadística y Censos. (2011). Encuesta de estratificación del nivel socioeconómico NSE 2011. https://bit.ly/3BeZ1mW
Intergovernmental Panel on Climate Change. (2014). Climate change 2014 mitigation of climate change. In Climate change 2014 mitigation of climate change. Cambridge University Press. https://doi.org/10.1017/CBO9781107415416
Jalil-Vega, F., García Kerdan, I., & Hawkes, A. D. (2020). Spatially-resolved urban energy systems model to study decarbonisation pathways for energy services in cities. Applied Energy, 262, 114445. https://doi.org/10.1016/j.apenergy.2019.114445
Janipella, R., Gupta, V., & Moharir, R. V. (2019). Application of geographic information system in energy utilization. In S. Kumar, R. Kumar & A. Pandey (Eds.), Current developments in biotechnology and bioengineering: Waste treatment processes for energy generation (pp. 143–161). Elsevier. https://doi.org/10.1016/B978-0-444-64083-3.00008-7
Karimi, M. J., & Vaez-Zadeh, S. (2021). An agent-based model for electric energy policy assessment. Electric Power Systems Research, 192, 106903. https://doi.org/10.1016/j.epsr.2020.106903
Larrosa, J. M. (2016). Agentes computacionales y análisis económico. Revista de Economía Institucional, 18 (34), 87–113. https://bit.ly/3BixyAF
Liang, S., & Zhang, T. (2011). What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy, 39(11), 7078–7083. https://doi.org/10.1016/j.enpol.2011.08.014
Lind, A., & Espegren, K. (2017). The use of energy system models for analysing the transition to low-carbon cities: The case of Oslo. Energy Strategy Reviews, 15, 44–56. https://doi.org/10.1016/j.esr.2017.01.001
Ma, J., & Cheng, J. C. P. (2016). Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology. Applied Energy, 183, 182–192. https://doi.org/10.1016/j.apenergy.2016.08.079
Martínez-Gordón, R., Morales-España, G., Sijm, J., & Faaij, A. P. C. (2021). A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region. Renewable and Sustainable Energy Reviews, 141, 110857. https://doi.org/10.1016/j.rser.2021.110857
Mastrucci, A., Pérez-López, P., Benetto, E., Leopold, U., & Blanc, I. (2017). Global sensitivity analysis as a support for the generation of simplified building stock energy models. Energy and Buildings, 149, 368–383. https://doi.org/10.1016/j.enbuild.2017.05.022
Miu, L., & Hawkes, A. D. (2020). Private landlords and energy efficiency: Evidence for policymakers from a large-scale study in the United Kingdom. Energy Policy, 142, 111446. https://doi.org/10.1016/j.enpol.2020.111446
Moya, D. (2020). Global decarbonisation pathways of the residential sector using a Geographical Information Systems approach and Agent-based modelling [Tesis doctoral no publicada] (Imperial College London).
Moya, D., Budinis, S., Giarola, S., & Hawkes, A. (2020). Agent-based scenarios comparison for assessing fuel-switching investment in long-term energy transitions of the India’s industry sector. Applied Energy, 274, 115295. https://doi.org/10.1016/j.apenergy.2020.115295
Muratori, M., Kheshgi, H., Mignone, B., Clarke, L., McJeon, H., & Edmonds, J. (2017). Carbon capture and storage across fuels and sectors in energy system transformation pathways. International Journal of Greenhouse Gas Control, 57, 34–41. https://doi.org/10.1016/j.ijggc.2016.11.026
Mutani, G., & Todeschi, V. (2019). An urban energy atlas and engineering model for resilient cities. International Journal of Heat and Technology, 37(4), 936–947. https://doi.org/10.18280/ijht.370402
Obama, B. (2017). The irreversible momentum of clean energy. Science, 355(6321), 126–129. https://doi.org/10.1126/science.aam6284
Pereda, M., & Zamarreño, J. M. (2015). Modelado basado en agentes: Un enfoque desde la ingeniería de sistemas. Revista Iberoamericana de Automática e Informática Industrial, 12(3), 304–312. https://doi.org/10.1016/j.riai.2015.02.007
Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74–86. https://doi.org/10.1016/j.rser.2014.02.003
Rai, V., & Henry, A. D. (2016). Agent-based modelling of consumer energy choices. Nature Climate Change, 6, 556–562. https://doi.org/10.1038/nclimate2967
Rode, P., Keim, C., Robazza, G., Viejo, P., & Schofield, J. (2014). Cities and energy: Urban morphology and residential heat-energy demand. Environment and Planning B: Planning and Design, 41(1), 138–162. https://doi.org/10.1068/b39065
Rosas-Flores, J. A., Zenón-Olvera, E., & Gálvez, D. M. (2019). Potential energy saving in urban and rural households of Mexico with solar photovoltaic systems using geographical information system. Renewable and Sustainable Energy Reviews, 116, 109412. https://doi.org/10.1016/j.rser.2019.109412
Sachs, J., Meng, Y., Giarola, S., & Hawkes, A. (2019). An agent-based model for energy investment decisions in the residential sector. Energy, 172, 752–768. https://doi.org/10.1016/j.energy.2019.01.161
Salim, M. G. (2012). Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases. Journal of Advanced Research, 3(1), 11–19. https://doi.org/10.1016/j.jare.2011.02.008
Smajgl, A., Brown, D. G., Valbuena, D., & Huigen, M. G. A. (2011). Empirical characterisation of agent behaviours in socio-ecological systems. Environmental Modelling & Software, 26(7), 837–844. https://doi.org/10.1016/j.envsoft.2011.02.011
Sousa, G., Jones, B. M., Mirzaei, P. A., & Robinson, D. (2017). A review and critique of UK housing stock energy models, modelling approaches and data sources. Energy and Buildings, 151, 66–80. https://doi.org/10.1016/j.enbuild.2017.06.043
Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLOS ONE, 10(2), e0107042. https://doi.org/10.1371/journal.pone.0107042
Sztubecka, M., Skiba, M., Mrówczyńska, M., & Bazan-Krzywoszańska, A. (2020). An innovative decision support system to improve the energy efficiency of buildings in urban areas. Remote Sensing, 12(2), 259. https://doi.org/10.3390/rs12020259
Tian, S., & Chang, S. (2020). An agent-based model of household energy consumption. Journal of Cleaner Production, 242, 118378. https://doi.org/10.1016/j.jclepro.2019.118378
Trotta, G. (2018). Factors affecting energy-saving behaviours and energy efficiency investments in British households. Energy Policy, 114, 529–539. https://doi.org/10.1016/j.enpol.2017.12.042
Uva, M. A., & Campanella, O. (n.d.). AP-SIG: Un SIG con funciones específicas para Agricultura de Precisión. Recuperado en octubre 18, 2021, de https://core.ac.uk/download/pdf/301040323.pdf
Vázquez, R. (2017). Uso de sistemas de información geográrica libres para la protección del medio ambiente. Caso de estudio: Manipulación de mapas ráster con datos climáticos [Use of free geographical information systems for the protection of the environment. Case study: Raster map management with climate data]. Universidad y Sociedad, 10(2), 158–164. http://scielo.sld.cu/pdf/rus/v10n2/2218-3620-rus-10-02-158.pdf
Wei, J., Huang, K., Yang, S., Li, Y., Hu, T., & Zhang, Y. (2017). Driving forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: An input–output structural decomposition analysis. Journal of Cleaner Production, 163, 58–68. https://doi.org/10.1016/j.jclepro.2016.05.086
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 The Authors
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.