Aplicación del modelo de programación CUDA en la simulación de la evolución de secuencias genéticas
DOI:
https://doi.org/10.29019/enfoqueute.v8n2.159Palabras clave:
simulación, evolución molecular, Markov, programación paralela, CUDAResumen
La simulación resulta un poderoso enfoque en el estudio de la evolución molecular de secuencias genéticas y su divergencia a lo largo del tiempo; existen diferentes procedimientos de simulación de la evolución molecular, pero todos ellos poseen alta complejidad computacional, y en la mayoría de los casos las secuencias genéticas poseen gran tamaño, aumentando los tiempos de ejecución de las implementaciones de estos procedimientos. A partir de esta problemática, en este trabajo se describe una propuesta de modelo de paralelización utilizando la tecnología CUDA y los resultados de esta propuesta se comparan con su equivalente secuencial.
Descargas
Citas
Claver, J. M., Sanjuan, A., & Arnau, V. (2007). Análisis paralelo de secuencias de ADN mediante el uso de GPU y CUDA. Uv.es, 1–6. Retrieved from http://www.uv.es/VARNAU/115-GPU-ANACAP_2008.pdf
Cornebise, J., & Peters, G. W. (2009). Comments on “Particle Markov Chain Monte Carlo” by C. Andrieu, A. Doucet and R. Hollenstein. Arxiv, 1–9. Retrieved from http://arxiv.org/abs/0911.3866
Counsell, D. (2005). Bioinformatics and molecular evolution. Comparative and Functional Genomics, 6(5-6), 317–319. https://doi.org/10.1002/cfg.486
CUDA Zone | NVIDIA Developer. (2011). Retrieved January 4, 2017, from https://developer.nvidia.com/cuda-zone
Hwu, W. (2012). GPU computing gems. Applications of GPU computing series. https://doi.org/10.1017/CBO9781107415324.004
Link, W. A., & Eaton, M. J. (2012). On thinning of chains in MCMC. Methods in Ecology and Evolution, 3(1), 112–115. https://doi.org/10.1111/j.2041-210X.2011.00131.x
Liu, Y., Schmidt, B., & Maskell, D. L. (2012). CUSBHAW: A CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics, 28(14), 1830–1837. https://doi.org/10.1093/bioinformatics/bts276
Liu, Y., Wirawan, A., & Schmidt, B. (2013). CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics, 14, 117. https://doi.org/10.1186/1471-2105-14-117
Manavski, S. A., & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics, 9 Suppl 2, S10. https://doi.org/10.1186/1471-2105-9-S2-S10
NVIDIA. (2015). CUDA Toolkit 7.5 Documentation. Retrieved January 4, 2017, from http://docs.nvidia.com/cuda/index.html
Nvidia, C. (2011). NVIDIA CUDA C Programming Guide. Changes, (350), 173. https://doi.org/PG-02829-001_v6.0
Sánchez, G. A. L., Carbajal, M. O., Cortés, N. C., & Fernández, R. B. (2012). Sobre la programación paralela de un algoritmo de optimización por cúmulo de partículas en un dispositivo GPU multi-hilos. Intekhnia, 6(2), 59–74.
Schatz, M., Trapnell, C., Delcher, A., & Varshney, A. (2007). High-throughput sequence alignment using Graphics Processing Units. BMC Bioinformatics, 8, 474. https://doi.org/10.1186/1471-2105-8-474
Weber, R. (2012). Markov Chains. Statslab.Cam.Ac.Uk, 28–49. https://doi.org/10.1017/CCOL0521534283.010
Yang, Z. (2006). Computational molecular evolution. Oxford Series in Ecology and Evolution, xvi, 357 p. https://doi.org/10.1093/acprof:oso/9780198567028.001.0001
Yang, Z., & Rodríguez, C. E. (2013). Searching for efficient Markov chain Monte Carlo proposal kernels. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19307–12. https://doi.org/10.1073/pnas.1311790110
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.