Use of membrane technology and resins for the separation and purification of polyphenols purple tree tomato (Solanum betaceum Cav)
DOI:
https://doi.org/10.29019/enfoqueute.v7n4.115Keywords:
Microfiltration, ultrafiltration, tamarilloAbstract
The polyphenols fractionation of mesocarp juices, placenta and purple tree tomato peel using the pore size of the membrane as a means of selection was performed using micro and ultrafiltration tangential; tests made with HPLC showed that fractionation of phenolic compounds was not performed. The processes of concentration of the clarified juices of placenta and tree tomato peel by reverse osmosis obtained a volumetric concentration factor of 2 and 2.2 respectively. The polyphenol concentration increased by 1.5 times for placenta and 2.4 times for peel and antioxidant capacity increased by 2.4 times for both juices. The anthocyanins of placenta increased by 2.6 times. The use of the resin XA 5071 FG concentrated phenolic compounds with an increase of antioxidant capacity in a range between 4 and 5.5, and anthocyanins concentration was increased 1.8 times in the placenta juice. In conclusion the process of polyphenols concentration of tree tomato was more efficient using the resin XA 5071 FG than the reverse osmosis applied in this research.
Downloads
References
Bravo, L. (1998). Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutricional Significance. Nutrition Reviews, 56, 317-333.
Chandra, A., Nair, M., & Iezzoni, A. (1993). Isolation and Stabilization of Anthocyanins from Tart Cherries (Prunus cermug L.). Journal of Agricultural and Food Chemistry, 41, 1062-1065.
Chile, Instituto Nacional de Normalización (INN). (2007). Norma chilena. Miel de abejas- Determinación del contenido de fructosa, glucosa, sacarosa, turanosa y maltosa- Método HPLC con detector IR. NCh574.cR2006. Santiago, Chile.
Coronel, M. (2012). Microfiltración tangencial. Enfoque UTE, 3(1), 01–07.
Georgé, S., Brat, P., Alter, P., & Amiot, M. (2005). Rapid Determination of Polyphenols and Vitamin C in Plant-Derived Products. Journal of Agricultural and food chemistry, 53, 1370-1373.
Gil, M., Tomás-Berberán, F., Hess-Pierce, B., Holcroft, D., & Kader, A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem., 48, 4581-4589.
Horwits, W. (2000). Official Methods of Analysis of AOAC international (17 ed.). Maryland: AOAC INTERNATIONAL.
Lichtenthäler, R., & Marx, F. (2005). Total oxidant scavenging capacities of common european fruit and vegetables juices. J. Agric. Food Chem., 53., 103-110.
Liu, X., Xiao, G., Chen, W., Xu, Y., & Wu, J. (2004). Quantification and Purification of Mulberry Anthocyanins With Macroporous Resins. Journal of Biomedicine and Biotechnology, 5, 326-331.
Liu, X., Yang, B., Xu, Z., Zhao, J., Gao, Y., & Wang, L. (2007). Adsorption Caracteristics of Anthocyanins from Purple-fleshed Potato (Solanum tuberosum Jasim) Extract on Macroporous Resins. International Journal of Food Engineering, 3(5).
Macrae, R (1988). HPLC in food analysis, 2nd edition, Academic Press, Great Britain.
Marcillo, V. (2010). Obtención de jugos clarificados concentados de mora (Rubus glaucus), tomate de árbol (Solanum betaceum) y naranjilla (Solanum Quitoense) mediante el uso de tecnología de membranas. Escuela Politécnica Nacional, Quito.
Marcillo, V., Cruz, A. P. G., Cabral, L. M. C., Matta, V. M., Vera, E., & Ruales, J. (2007). Utilización de tenología de membranas para la obtención de jugo clarificado concentrado de mora (Rubus glaucus). Alimentos Ciencia e Ingeniería, 16(1), 89-91.
Matta, V., Moretti, R., & Cabral, L. (2004). Microfiltration and reverse osmosis for clarification and concentration of acerola juice. Journal of Food Engineering, 61, 477-482.
Mazza, G., & Velioglu, Y. (1992). Anthocyanins and other phenolic compounds in fruits of red-flesh apples. Food Chemistry, 43(2), 113-117.
Ou, B., Hampsch-Woodill, M., & Prior, R. (2001). Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent. J. Agric.Food Chem, 49, 4619-4626.
Scordino, M., Di Mauro, A., Passerini, A., & Maccarone, E. (2004). Adsorption of Flavonoids on Resins: Cyanidin 3-Glucoside. Journal of Agricultural and Food Chemistry, 52, 1965-1972.
Scott, K. (1995). Handbook of industrial membranes (2 ed.). Oxford.
Silva, E., Pompeu, D., Larondelle, Y., & Rogez, H. (2007). Optimisation of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology. Separation and Purification Technology, 53, 274-280.
Vasco, C. (2005). Qualitative and quantitative analysis of phenolic compounds with antioxidant capacity in a selection of fruits and vegetables cultivated in Ecuador. M. Sc. thesis, Escuela Politécnica Nacional, Quito-Ecuador, Chalmers University of Technology, Gothenburg-Sweden.
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.