Design and implementation of a Smart Measurement System for AMI in the microgrid of the University of Nariño
DOI:
https://doi.org/10.29019/enfoqueute.v8n1.136Keywords:
Smart meter, AMI, smart grid, microgrid, cybersecurity.Abstract
This project describes a proposed Measure Management System, from the design stage to the implementation of a prototype smart meter, adapted to operate in the microgrid at the University of Nariño. This device features a constant record of measures, with resolution of 24 bits, sufficient to perform power quality analysis. In addition, it is integrated into the SCADA system through the open protocols MODBUS, DNP3 and IEC 61850, with scheduled cybersecurity techniques. Likewise, several management platforms for the monitoring of electrical variables and control over the current flow to the loads is designed. Finally, two study cases show the application of the implemented measure management system in the microgrid.
Downloads
References
Ipakchi, A. and Farrokh A. (2009). Grid of the future. IEEE Power and Energy Magazine 7.2: p. 52-62.
Chen, Changsong, et al. (2011). Smart energy management system for optimal microgrid economic operation. IET renewable power generation 5.3 p. 258-267.
Hart, David G. (2008) Using AMI to realize the Smart Grid. 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century.
Maksimović, Mirjana, et al. (2014). Raspberry Pi as Internet of things hardware: performances and constraints. IcETRAN 2014.
Callaghan, V. (2012). Buzz-boarding; practical support for teaching computing, based on the internet-of-things. 1st Annual Conference on the Aiming for Excellence in STEM Learning and Teaching, Imperial College, London & The Royal Geographical Society.
Clarke, G. R., Reynders, D., & Wright, E. (2004). Practical modern SCADA protocols: DNP3, 60870.5 and related systems. Newnes.
IEEE Power and Energy Society. (2012). IEEE Standard for Electric Power Systems Communication – Distributed Network Protocol (DNP3). New York, USA.
Grady W. M., Gilleskie R. J. (1993) Harmonics and how they relate to power factor. Proceedings of the EPIR Power Quality Issues & Opportunities Conference. November.
Boyer, Stuart A. (2009) SCADA: supervisory control and data acquisition. International Society of Automation.
Fovino, I. N., Coletta, A., Carcano, A., & Masera, M. (2012). Critical state-based filtering system for securing SCADA network protocols. IEEE Transactions on industrial electronics, 59(10), 3943-3950.
Tonyali, S., Cakmak, O., Mahmoud, M., & Guvenc, I. (2016) Secure Data Obfuscation Scheme to Enable Privacy-Preserving State Estimation in Smart Grid AMI Networks. IEEE Internet of Things Journal.
Jiao, Z., Gong, H., & Wang, Y. (2016) A DS Evidence Theory-based Relay Protection System Hidden Failures Detection Method in Smart Grid. IEEE Transactions on Smart Grid.
Yan, J., He, H., Zhong, X., & Tang, Y. (2016) Q-learning Based Vulnerability Analysis of Smart Grid against Sequential Topology Attacks. IEEE Transactions on Information Forensics and Security.
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.