Use of an orthogonal arrangement for the analysis of the process of die sink electrical discharge machining with shape electrodes of graphite and copper on aluminum micro-casting)
DOI:
https://doi.org/10.29019/enfoqueute.v9n3.315Keywords:
orthogonal arrangement, electroerosion;, electrode;, roughness;, tooling wearAbstract
This paper deals with the use of the Taguchi method in the realization of experiments to solve the multiple answers in the process of EDM machining using copper and graphite electrodes. This manufacturing process was carried out on the aluminum microfusion material widely used in the footwear manufacturing industry. The experimentation was carried out according to an orthogonal arrangement L8. Analysis of variance (ANOVA) was used to determine the effects of the input variables (tooling material, pulse time, tool shape and cutting depth) on the output variables (material removal rate and surface roughness); as well as a regression analysis to predict the results of the experimental analysis. The results have shown that machining parameters can be optimized with considerations of multiple responses effectively. It is evident that the pulse time is the main influencer in the material removal rate (MRR) and the machining time has a greater influence on the surface roughness (Ra). Finally, it was demonstrated that the copper electrode has better working efficiency and the graphite gives better surface roughness.
Downloads
References
Banker, K., Prajapati, U., Prajapati, J., & Modi, P. (2014). Parameter optimization of electro discharge machine of AISI 304 steel by using taguchi method. International Journal of Application or Innovation in Engineering & Management, 3(8), 20-24.
Kunieda, M., Lauwers, B., Rajurkar, K., & Schumacher, B. (2005). Advancing EDM through fundamental insight into the process. CIRP Annals-Manufacturing Technology, 54(2), 64-87.
Lee, L., Lim, L., Narayanan, V., & Venkatesh, V. (1988). Quantification of surface damage of tool steels after EDM. International Journal of Machine Tools and Manufacture, 28(4), 359-372.
Lin, C., Lin, J., & Ko, T. (2002). Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. The International Journal of Advanced Manufacturing Technology, 19(4), 271-277.
Marafona, J., & Wykes, C. (2000). A new method of optimising material removal rate using EDM with copper–tungsten electrodes. International Journal of Machine Tools and Manufacture, 40(2), 153-164.
Pandey, P., & Jilani, S. (1987). Electrical machining characteristics of cemented carbides. Wear, 116(1), 77-88.
Roy, T., & Dutta, R. (2014). Study of the Effect of EDM Parameters based on Tool Overcut using Stainless Steel (SS 304 Grade). Int. J. Eng. Trends Technol.(IJETT), 13(5), 196-199.
Sanghani, C., & Acharya, G. (2014). A review of research on improvement and optimization of performance measures for electrical discharge machining. Journal of Engineering Research and Applications, 4(1), 433-450.
Santamaría Zambrano, C. J. (2017). Análisis de parámetros de mecanizado en el proceso de electroerosión por penetración en microfundición de aluminio con electrodos de cobre y grafito y su relación con la rugosidad superficial resultante. Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica. Carrera de Ingeniería Mecánica.
Shrivastava, S. M., & Sarathe, A. (2014). Influence of process parameters and electrode shape configuration on material removal rate, surface roughness and electrode wear in die sinking EDM: a review. International Journal of Emerging Technology and Advanced Engineering, 4(4), 138-145.
Singh, B., Kasdekar, D. K., & Parashar, V. (2015). Application of GRA for Optimal Machining Parameter Selection in EDM. International Journal of Hybrid Information Technology, 8(10), 371-382.
Sohani, M., Gaitonde, V., Siddeswarappa, B., & Deshpande, A. (2009). Investigations into the effect of tool shapes with size factor consideration in sink electrical discharge machining (EDM) process. The International Journal of Advanced Manufacturing Technology, 45(11-12), 1131.
Su, J., Kao, J., & Tarng, Y. (2004). Optimisation of the electrical discharge machining process using a GA-based neural network. The International Journal of Advanced Manufacturing Technology, 24(1-2), 81-90.
Wu, J., Zhou, M., Xu, X., Yang, J., Zeng, X., & Xu, D. (2016). Fast and stable electrical discharge machining (EDM). Mechanical Systems and Signal Processing, 72, 420-431.
Yahya, A., & Manning, C. (2004). Determination of material removal rate of an electro-discharge machine using dimensional analysis. Journal of Physics D: Applied Physics, 37(10), 1467.
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.