A context ontology for a mobile recommender system of advertisements)

Authors

  • Lenin Xavier Erazo Garzón Universidad del Azuay
  • Andrés Patiño Universidad del Azuay

DOI:

https://doi.org/10.29019/enfoqueute.v9n3.327

Keywords:

ubiquitous computation, context-aware, ontology, recommendation system, advertisement

Abstract

Currently, most recommendation systems do not consider the context in which they are executed, being inappropriate to operate on mobile devices, this can be observed in the field of advertising, where users are overwhelmed by the excessive general information that they receive, causing widespread dissatisfaction with their use. One of the biggest challenges to incorporate contextual information to the software is the design of a formal model for its representation, because traditional methods are inadequate for this purpose, being necessary to use alternative approaches such as those based on ontologies. This work describes the process used in the construction of an ontology to represent the information of the advertisements and the contextual dimensions: location, time and users’ needs, to consider when recommending. Through the application of the NeOn methodology, an expressive and extensible ontological model was obtained that integrates the ontologies: FOAF, OWL-Time and WGS84 Geo Positioning. The proposed ontology is an initial contribution for the creation of a context-aware mobile recommender system of advertisements.

Downloads

Download data is not yet available.

References

Brickley, D., & Miller, L. (2014). FOAF vocabulary specification 0.99. Recuperado de http://xmlns.com/foaf/spec/ (accedido el 04/04/2018).
Chen, H., Finin, T., & Joshi, A. (2003). An ontology for context-aware pervasive computing environments. The Knowledge Engineering Review, 18(3), 197-207. http://dx.doi.org/10.1017/S0269888904000025.
Chen, H., Perich, F., Finin, T., & Joshi, A. (2004). SOUPA: Standard ontology for ubiquitous and pervasive applications. In Mobile and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004, IEEE, Boston, USA, p. 258-267. http://dx.doi.org/10.1109/MOBIQ.2004.1331732.
De Paiva, F. A., Costa, J. A., Silva, C. R., & França, R. S. (2013). Arquitetura de um Sistema de Recomendação Baseado em Ontologia para Anúncios de Carros. In ONTOBRAS, p. 173-178.
Espinoza-Mejía, M., & Saquicela, V. (2014). Modelando los hábitos de consumo televisivo usando tecnología semántica. In Congreso de Ciencia y Tecnología ESPE, 9(1), 215-224.
Grüninger, M., & Fox, M. (1995). Methodology for the design and evaluation of ontologies. In International Joint Conference on Artificial Inteligence, IJCAI95, Workshop on Basic Ontological Issues in Knowledge Sharing.
Jang, Y., Lee, T., Kim, K., Lee, W., Ann, D., & Chung, S. (2007). Keyword Management System based on Ontology for Contextual Advertising. In Advanced Language Processing and Web Information Technology, ALPIT 2007, IEEE, Luoyang, Henan, China, p. 440-445. http://dx.doi.org/10.1109/ALPIT.2007.98
Kagal, L., Finin, T., & Joshi, A. (2003). A policy based approach to security for the semantic web. In International semantic web conference, ISWC 2003, Springer, Berlin, Heidelberg, p. 402-418. http://dx.doi.org/10.1007/978-3-540-39718-2_26.
Kim, J., & Kang, S. (2013). An ontology-based personalized target advertisement system on interactive TV. Multimedia tools and applications, 64(3), 517-534. http://dx.doi.org/10.1007/s11042-011-0965-0.
Kim, K. J., Ahn, H., & Jeong, S. (2010). Context-aware recommender systems using data mining techniques. In Proceedings of world academy of science, engineering and technology, p. 357-362.
Lenat, D. B., & Guha, R. V. (1993). Building large knowledge-based systems: Representation and inference in the CYC project. Artificial Intelligence, Elsevier Science Publishers B.V., 61(1), 95-104.
Moore, P., Hu, B. Z., Campbell, W., & Ratcliffe, M. (2007). A survey of context modeling for pervasive cooperative learning. In Information Technologies and Applications in Education 200, ISITAE '07, IEEE, Kunming, China, p. k5-1 - k5-6. http://dx.doi.org/10.1109/ISITAE.2007.4409367.
OGC. (2018). GeoSPARQL - A Geographic Query Language for RDF Data. Recuperado de http://www.opengeospatial.org/standards/geosparql (accedido el 10/04/2018)
Pan, F., & Hobbs, J. R. (2004). Time in OWL-S. In Proceedings of AAAI Spring Symposium on Semantic Web Services, p. 29-36.
Perich, F. (2004). Mogatu BDI ontology. University of Maryland, Baltimore County.
Poveda-Villalón, M., Suárez-Figueroa, M. C., & García-Castro, R. (2010). A context ontology for mobile environments. In Workshop on Context, Information and Ontologies - CIAO 2010 Co-located with EKAW 2010, Lisbon, Portugal. ISBN ISSN: 1613-0073.
Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., De Bosschere, K. (2004). Towards an extensible context ontology for Ambient Intelligence. In European Symposium on Ambient Intelligence, EUSAI 2004, Springer, Berlin, Heidelberg, p. 148-159. http://dx.doi.org/10.1007/978-3-540-30473-9_15.
Rodríguez-Hernández, M. d., & Ilarri, S. (2014). Towards a context-aware mobile recommendation architecture. In International Conference on Mobile Web and Information Systems, MobiWIS 2014, Springer, Cham, p. 56-70. http://dx.doi.org/10.1007/978-3-319-10359-4_5.
Strang, T., & Linnhoff-Popien, C. (2004). A context modeling survey. In First International Workshop on Advanced Context Modelling, Reasoning and Management, UbiComp 2004, Nottingham, England.
Suarez-Figueroa, M. C. (2013). NeOn Methodology for Building Ontology Networks: Specification, Scheduling and Reuse. Tesis (Doctoral), Facultad de Informática, Universidad Politécnica de Madrid.
Suárez-Figueroa, M. C., Gómez-Pérez, A. & Villazón-Terrazas, B. (2009). How to write and use the ontology requirements specification document. In Proceedings of the Confederated International Conferences, CoopIS, DOA, IS, and ODBASE 2009 on the Move to Meaningful Internet Systems: Part II, ser. OTM ’09, Springer, Berlin, Heidelberg, p. 966-982, http://dx.doi.org/10.1007/978-3-642-05151-7_16.
W3C. (2008). SPARQL Lenguaje de consulta para RDF. Recuperado de http://skos.um.es/TR/rdf-sparql-query/ (accedido el 10/04/2018).
W3C. (2017). Time Ontology in OWL. Recuperado de https://www.w3.org/TR/owl-time/ (accedido el 04/04/2018).
W3C Semantic Web Interest Group. (2009). Basic Geo (WGS84 lat/long) vocabulary. Obtenido de https://www.w3.org/2003/01/geo/ (accedido el 04/04/2018).
Wang, X., Zhang, D., Gu, T., & Pung, H. (2004). Ontology based context modeling and reasoning using OWL. In Pervasive Computing and Communications Workshops, IEEE, Orlando, USA, p.18-22, http://dx.doi.org/10.1109/PERCOMW.2004.1276898.
Weiser, M. (1991). The Computer for the 21st Century. Scientific American, p. 94-100.
Weiser, M., & Brown, J. S. (1997). The coming age of calm technolgy. In Beyond calculation, Springer, New York, USA, p. 75-85. http://dx.doi.org/10.1007/978-1-4612-0685-9_6.
Xu, N., Zhang, W., Yang, H., Zhang, X., & Xing, X. (2013). CACOnt: A ontology-based model for context modeling and reasoning. In Applied Mechanics and Materials, p. 2304-2310. http://dx.doi.org/10.4028/www.scientific.net/AMM.347-350.2304.

Published

2018-09-28

How to Cite

Erazo Garzón, L. X., & Patiño, A. (2018). A context ontology for a mobile recommender system of advertisements). Enfoque UTE, 9(3), pp. 50 – 66. https://doi.org/10.29019/enfoqueute.v9n3.327

Issue

Section

Computer Science, ICTs