Obtaining and Characterization of a Quinoa Protein Hydrolyzate (Chenopodium quinoa willd)
DOI:
https://doi.org/10.29019/enfoque.v10n2.424Keywords:
amino acids; digestibility of protein; functional properties; isoelectric precipitationAbstract
The present research focused on obtaining a hydrolyzate from a quinoa protein concentrate (isoelectric precipitation method), while the hydrolyzate was achieved with the application of papain enzyme in different concentrations and temperature. The nutritional and functional properties were evaluated in the hydrolyzate, establishing the fact that application of enzyme at a concentration of 0.159 AU/g and pH 6.5 allowed to reach a hydrolysis rate of 13 %, a protein content of 73.41 g/100 g, digestibility rate of 87.75 %, and an amino acid profile within the standard requirements established for children, according to FAO. The functional properties of the hydrolyzate reflected an index of dispersibility of 83.71 %, protein solubility of 85.35 %, foaming capacity of 125 % volume at pH 10, water retention capacity of 0.33 g/g protein and oil holding capacity of 0.56 g/g protein. These values show the potential of the protein hydrolyzate in the elaboration of food formulas for diets with special regimes or as an ingredient in the food industry.
Downloads
References
Aluko, R. E., & Monu, E. (2003). Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science, 68(4), 1254-1258.
Añon, C. (2003). Los nuevos viejos cultivos: Amaranto, quinoa y Chía. Seminario Buenos Aires.
AOAC. (1984). The Official Methods of Analysis of AOAC. Washigton.
Ávila Zapata, C. A. (2011). Determinación de las propiedades físico-químicas y funcionales del aislado e hidrolizado enzimático de la proteína de soya a escala piloto, para aplicación en alimentos. Tesis de grado, Escuela Politécnica Nacional.
Badui, S. (2006). Química de los Alimentos (cuarta). México: Alambra.
Belitz, H.-D., y Grosch, W. (1997). Química de los alimentos, 2.a ed). Zaragoza España: Acribia.
Benitez, R., Ibarz Ribas, A., y Pagan, J. (2008). Hidrolizados de proteína: procesos y aplicaciones. Acta Bioquimica Clinica Latinoamericana, 42(2), 227-236.
Bera, M. B., y Mukherjee, R. K. (1989). Solubility, emulsifying, and foaming properties of rice bran protein concentrates. Journal of Food Science, 54(1), 142-145.
Callisaya, A., Carlos, J., Alvarado, K., y Antonio, J. (2009). Aislados Proteínicos de granos altoandinos Chenopodiaceas; quinua “Chenopodium Quinoa”-Cañahua “Chenopodium Pallidicaule” por Precipitación Isoeléctrica. Revista Boliviana de Química, 26(1), 12–20.
Carrasco, E., y Soto, L. (2010). Importancia de los granos andinos. En W. Rojas, José Luis Soto, M. Pinto, M. Jäger, y S. Padulosi (eds.), Granos Andinos. Avances. logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Roma: Bioversity International.
Castel, M. V. (2010). Estudio de las propiedades funcionales, tecnológicas y fisiológicas de las proteínas de amaranto. Santa Fe, Argentina: Universidad Nacional del Litoral,.
Cervilla, N., Mufari, J., Calandri, E., y Guzmán, C. (2012). Determinación del contenido de aminoácidos en harinas de quinoa de origen argentino. Evaluación de su calidad proteica. Actualización en Nutrición, 13(2), 107-113.
Chau, C.-F., Cheung, P. C. K., y Wong, Y-S. (1997). Functional properties of protein concentrates from three Chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45(7), 2500-2503.
Díaz, P. (2016). Desarrollo de un proceso para la obtención de un aislado proteico a partir de la harina de quinua (Chenopodium quinoa) para su evaluación potencial en la industria. Escuela Politécnica Nacional, Quito.
Elsohaimy, S. A., Refaay, T. M., y Zaytoun, M. A. M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305.
FAO. (2011). La quinua: cultivo milenario para contribuir a la seguridad alimentaria. Roma.
FAO. (1985). Necesidades de energía y de proteínas. Informe de la reunión consultiva conjunta FAO/OMS/ONU de expertos. Ginebra.
Hsu, H. W., Vavak, D. L., Satterlee, L. D., y Miller, G. A. (1977). A multienzyme technique for estimating protein digestibility. Journal of Food Science, 42(5), 1269-1273.
Jacobsen, S. E., Mujica, A., y Ortiz, R. (2003). La Importancia de los Cultivos Andinos. Fermentum, 36, 14-24.
James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research, 58, 1-31.
Janssen, F., Pauly, A., Rombouts, I., Jansens, K. J. A., Deleu, L. J., y Delcour, J. A. (2017). Proteins of Amaranth (Amaranthus spp.), Buckwheat (Fagopyrum spp.), and Quinoa (Chenopodium spp.): A Food Science and Technology Perspective. Comprehensive Reviews in Food Science and Food Safety, 16(1), 39-58. https://doi.org/10.1111/1541-4337.12240
Kim, S., Park, P., y Rhee, K. C. (1990). Functional properties of proteolytic enzyme modified soy protein isolate. Journal of Agricultural and Food Chemistry, 38(3), 651-656.
L.S. Bernardi, A. M. R. Pilosof, y Bartholomai, G. (1991). Enzymatic modification of soy protein concentrates by fungal and bacterial proteases. Journal of the American Oil Chemists Society, 68(2), 102-105.
Lujan, A. I. B. (2014). Influencia del pH en la extracción de aislado proteico de quinua (Chenopodium quínoa Willd) de las variedades Blanca Junín y Rosada Junín.
Martínez, A. (2013). Estado del arte de la quinua en el mundo en 2013. En D. Bazile, D. Bertero, & C. Nieto (eds.), Quinua: Aspectos Nutricionales del Arroz de los Incas (FAO y CIRA, p. 331-340). Santiago de Chile y Montpellier.
Martínez, K. D., Sánchez, C. C., Ruíz-Henestrosa, V. P., Patino, J. M. R., & Pilosof, A. M. R. (2007). Effect of limited hydrolysis of soy protein on the interactions with polysaccharides at the air–water interface. Food Hydrocolloids, 21(5), 813-822. https://doi.org/https://doi.org/10.1016/j.foodhyd.2006.09.008
Mufari, J. R. (2015). Aislado Proteico. In F. Grasso (Ed.), Aprovechamiento integral del grano de Quinoa. Aspectos tecnológicos, fisioquímicos, nutricionales y sensoriales. (primera). Argentina.
Pando, L. G., & Castellanos, E. A. (2016). Guía de cultivo de la quinua (FAO y Univ). Lima.
Parra, R. (2009). Lactosuero: importancia en la industria de alimentos. Revista Facultad Nacional de Agronomía, 62, 4967-4982.
Peralta, E., Mazón, N., Murillo, Á., Rivera, M., Diego Rodriguez, Lomas, L., & Monar, C. (2012). Manual Agrícola de Granos Andinos: Chocho, Quinua, Amaranto y Ataco. Cultivos, variedades y costos de producción (Tercera). Quito.
Qi, M., Hettiarachchy, N. S., & Kalapathy, U. (1997). Solubility and emulsifying properties of soy protein isolates modified by pancreatin. Journal of Food Science, 62(6), 1110-1115.
Robinson, D. (1991). Valor nutricional de las proteínas, hidrólisis enzimática de proteínas. En Calvo, M & Sevillano, E (eds.), Bioquímica y valor nutritivo de los alimentos. Zaragoza, España: Acribia.
Rosa Ramírez, y Pérez José. (2010). Alimentos funcionales: principios y nuevos productos. CDMX, México: Trillas.
Ruales, J., & Nair, B. (1994). Effect of processing on in vitro digestibility of protein and starch in quinoa seeds. International Journal of Food Science & Technology, 29(4), 449–456. https://doi.org/10.1111/j.1365-2621.1994.tb02086.x
Saavedra, L., Hebert, E. M., Minahk, C., y Ferranti, P. (2013). An overview of “omic” analytical methods applied in bioactive peptide studies. Food Research International, 54(1), 925–934. https://doi.org/10.1016/j.foodres.2013.02.034
Souza, M. W. S. de, Rolim, E., Carreira, R., Alfonso, W. de O., Silva, V. D. M., y Silvestre, M. P. C. (2008). Obtaining oligopeptides from whey: use of subtilisin and pancreatin. American Journal of Food Technology, 3 (5), 315-324.
Steffolani, M. E., Villacorta, P., Morales-Soriano, E. R., Repo-Carrasco, R., León, A. E., y Pérez, G. T. (2016). Physicochemical and functional characterization of protein isolated from different quinoa varieties (Chenopodium quinoa Willd.). Cereal Chemistry, 93(3), 275-281.
Tapia, I., Taco, D., y Taco, V. (2016). Aislamiento de proteínas de quinua ecuatoriana (Chenopodium quinoa Willd) variedad INIAP Tunkahuan con remoción de compuestos fenólicos, para uso potencial en la nutrición y salud humanas. Rev Fac Cien Med, 41(1), 71–80.
Toapanta Mayra. (2016). Caracterización de Aislados proteicos de quinua (Chenopodium quinoa Willd) y su Digestibilidad gástrica y duodenal (in vitro). Universidad Técnica de Ambato, Ambato.
Umagat, H., Kucera, P., y Wen, L. (1982). Total amino acid analysis using pre-column fluorescence derivatization. Journal of Chromatography A, 239, 463-474. https://doi.org/https://doi.org/10.1016/S0021-9673(00)82003-8
US Department of Agriculture, Agricultural Research Service, N. D. L. (2005). USDA National Nutrient Database for Standard Reference Dataset for What We Eat In America.
Valencia-Chamorro, S. A. (2016). Quinoa: Overview. (C. Wrigley, H. Corke, y J. Seetharaman, K., Faubion, eds.), Encyclopedia of Food Grains. Oxford: Academic Press.
Vilcacundo, R., y Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Food Microbiology-Funct. Foods and Nutrition, 14, 1–6. https://doi.org/10.1016/j.cofs.2016.11.007
Villacrés, E. (2001). Obtención de un hidrolizado enzimático de alta funcionalidad a partir del chocho (Lupinus mutabilis Sweet). Escuela Politécnica Nacional, Quito.
Villacrés, E., Peralta, E., Egas, L., y Mazón, N. (2011). Potencial agroindustrial de la quinua. Quito: Departamento de Nutrición y Calidad de los Alimentos. EESC.INIAP.
Villacrés, E., Rubio, A., Egas, L., y Segovia, G. (2006). Usos Alternativos del Chocho. INIAP-Estación Experimental Santa Catalina, Departamento de Nutrición y Calidad.
Vioque, J., Clemente, A., Pedroche, J., Yust, M. del M., y Millán, F. (2001). Obtención y aplicaciones de hidrolizados proteicos. Grasas y Aceites, 52(2), 132-136.
Yúfera, E. P. (1995). Química orgánica básica y aplicada. De la molécula a la industria. España: Reverté.
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Enfoque UTE
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.