Parallel robot prototype driven by four cables: experimental results

Authors

  • Xavier Aguas Escuela Politécnica Nacional
  • Marco Antonio Herrera Escuela Politécnica Nacional
  • Nelson Sotomayor Escuela Politécnica Nacional
  • Oscar Camacho Escuela Politécnica Nacional

DOI:

https://doi.org/10.29019/enfoqueute.v10n1.440

Keywords:

cables, kinematic, dynamic, PID, robot.

Abstract

Parallel cable robots are a special class of parallel robots which are formed by replacing rigid links with cables. Due to the characteristics provided by the cables, like low inertia and greater range of motion, this type of robots can perform a wide range of applications such as: moving cameras from one place to another in sporting events, motoring industry and mainly in rehabilitation of limbs. However, due to the unilateral property of cables, keeping them tensioned becomes a great challenge. This article describes the construction of a parallel robot driven by four cables with the aim to draw three figures through the study of the kinematic and dynamic model considering the redundancy, i.e., more cables than degrees of freedom, in order to avoid those cables that require more tension during the motion of the end-effector.

Downloads

Download data is not yet available.

References

Aguas, X., Herrera, M., Camacho, O., & Leica, P. (2018). A Sliding Mode Control for a Planar 4-Cable Direct Driven Robot. En 2018 International Conference on Information Systems and Computer Science (INCISCOS) (pp. 23–28). https://doi.org/10.1109/INCISCOS.2018.00011
Aguas, X. I., Cuaycal, A., Paredes, I., & Herrera, M. (2018). A Fuzzy Sliding Mode Controller for Planar 4-Cable Direct Driven Robot. Enfoque UTE, 9(4), 99–109.
Anson, M. (2015). Cable-driven parallel manipulators with base mobility: A planar case study (PhD Thesis). State University of New York at Buffalo.
Gallina, P., Rosati, G., & Rossi, A. (2001). 3-d.o.f. Wire Driven Planar Haptic Interface. Journal of Intelligent and Robotic Systems, 32(1), 23–36. https://doi.org/10.1023/A:1012095609866
Gallina, P., Rossi, A., & Williams II, R. L. (2001). Planar cable-direct-driven robots, part ii: Dynamics and control. En ASME. DECT2001 ASME Design Engineering Technical Conference. Pittsburgh: ASME Publisher (Vol. 2, pp. 1241–1247).
Heredia, J., & Mena, S. (2017). Implementación de un manipulador móvil para desarrollar tareas de seguimiento de trayectoria con un controlador tipo PID. Escuela Politécnica Nacional, Quito. Recuperado de http://bibdigital.epn.edu.ec/handle/15000/17238
Khakpour, H., Birglen, L., & Tahan, S. A. (2014). Synthesis of Differentially Driven Planar Cable Parallel Manipulators. IEEE Transactions on Robotics, 30(3), 619–630. https://doi.org/10.1109/TRO.2013.2295891
Khosravi, M. A., Taghirad, H. D., & Toosi, K. N. (2012). Dynamic Analysis and Control of Cable Driven Robots with Elastic Cables.
Khosravi, M., & Taghirad, H. (2013). Experimental Performance of Robust PID Controller on a Planar Cable Robot. En T. Bruckmann & A. Pott (Eds.), Cable-Driven Parallel Robots (pp. 337–352). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31988-4_21
Pott, A., Mütherich, H., Kraus, W., Schmidt, V., Miermeister, P., Dietz, T., & Verl, A. (2013). Cable-driven parallel robots for industrial applications: The IPAnema system family. En IEEE ISR 2013 (pp. 1–6). https://doi.org/10.1109/ISR.2013.6695742
Williams II, R., & Gallina, P. (2003). Translational Planar Cable-Direct-Driven Robots. Journal of Intelligent and Robotic Systems, 37(1), 69–96. https://doi.org/10.1023/A:1023975507009
Zanotto, D., Rosati, G., Minto, S., & Rossi, A. (2014). Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane. IEEE Transactions on Robotics, 30(4), 974–979. https://doi.org/10.1109/TRO.2014.2301532

Published

2019-03-29

How to Cite

Aguas, X., Herrera, M. A., Sotomayor, N., & Camacho, O. (2019). Parallel robot prototype driven by four cables: experimental results. Enfoque UTE, 10(1), pp. 13 – 25. https://doi.org/10.29019/enfoqueute.v10n1.440

Issue

Section

Automation and Control, Mechatronics, Electromechanics, Automotive