Parallel robot prototype driven by four cables: experimental results
DOI:
https://doi.org/10.29019/enfoqueute.v10n1.440Keywords:
cables, kinematic, dynamic, PID, robot.Abstract
Parallel cable robots are a special class of parallel robots which are formed by replacing rigid links with cables. Due to the characteristics provided by the cables, like low inertia and greater range of motion, this type of robots can perform a wide range of applications such as: moving cameras from one place to another in sporting events, motoring industry and mainly in rehabilitation of limbs. However, due to the unilateral property of cables, keeping them tensioned becomes a great challenge. This article describes the construction of a parallel robot driven by four cables with the aim to draw three figures through the study of the kinematic and dynamic model considering the redundancy, i.e., more cables than degrees of freedom, in order to avoid those cables that require more tension during the motion of the end-effector.
Downloads
References
Aguas, X. I., Cuaycal, A., Paredes, I., & Herrera, M. (2018). A Fuzzy Sliding Mode Controller for Planar 4-Cable Direct Driven Robot. Enfoque UTE, 9(4), 99–109.
Anson, M. (2015). Cable-driven parallel manipulators with base mobility: A planar case study (PhD Thesis). State University of New York at Buffalo.
Gallina, P., Rosati, G., & Rossi, A. (2001). 3-d.o.f. Wire Driven Planar Haptic Interface. Journal of Intelligent and Robotic Systems, 32(1), 23–36. https://doi.org/10.1023/A:1012095609866
Gallina, P., Rossi, A., & Williams II, R. L. (2001). Planar cable-direct-driven robots, part ii: Dynamics and control. En ASME. DECT2001 ASME Design Engineering Technical Conference. Pittsburgh: ASME Publisher (Vol. 2, pp. 1241–1247).
Heredia, J., & Mena, S. (2017). Implementación de un manipulador móvil para desarrollar tareas de seguimiento de trayectoria con un controlador tipo PID. Escuela Politécnica Nacional, Quito. Recuperado de http://bibdigital.epn.edu.ec/handle/15000/17238
Khakpour, H., Birglen, L., & Tahan, S. A. (2014). Synthesis of Differentially Driven Planar Cable Parallel Manipulators. IEEE Transactions on Robotics, 30(3), 619–630. https://doi.org/10.1109/TRO.2013.2295891
Khosravi, M. A., Taghirad, H. D., & Toosi, K. N. (2012). Dynamic Analysis and Control of Cable Driven Robots with Elastic Cables.
Khosravi, M., & Taghirad, H. (2013). Experimental Performance of Robust PID Controller on a Planar Cable Robot. En T. Bruckmann & A. Pott (Eds.), Cable-Driven Parallel Robots (pp. 337–352). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31988-4_21
Pott, A., Mütherich, H., Kraus, W., Schmidt, V., Miermeister, P., Dietz, T., & Verl, A. (2013). Cable-driven parallel robots for industrial applications: The IPAnema system family. En IEEE ISR 2013 (pp. 1–6). https://doi.org/10.1109/ISR.2013.6695742
Williams II, R., & Gallina, P. (2003). Translational Planar Cable-Direct-Driven Robots. Journal of Intelligent and Robotic Systems, 37(1), 69–96. https://doi.org/10.1023/A:1023975507009
Zanotto, D., Rosati, G., Minto, S., & Rossi, A. (2014). Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane. IEEE Transactions on Robotics, 30(4), 974–979. https://doi.org/10.1109/TRO.2014.2301532
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.