Thermal Analysis of heat sink with Heat Pipes for High Performance Processors

Authors

  • Luis Fernando Toapanta Ramos Universidad Politécnica Salesiana
  • Cristian Andrade Universidad Politécnica Salesiana
  • Emilio Dávalos Álvarez Universidad Politécnica Salesiana
  • Sebastián Landázuri Zaldumbide Universidad Politécnica Salesiana
  • William Quitiaquez Universidad Politécnica Salesiana

DOI:

https://doi.org/10.29019/enfoque.v10n2.469

Keywords:

Heatsink; thermal analysis; heat pipe; heat transfer; ANSYS

Abstract

The objective of this document is to propose the thermal analysis of a heat dissipating device by using heat pipes containing different fluids, which are water, refrigerant R134a and methanol for the evaluation of these devices under certain design characteristics, due to the fact that at present the processors have a higher energy consumption and greater processing capacities, which causes a significant elevation of the temperature before demanding workloads. Through the use of the ANSYS simulation software, the thermal study of the device was carried out; in addition, the temperature gradient generated in it when in contact with a hot surface, which is going to be a high performance processor, demonstrating that stable temperatures can be obtained through the use of heat pipes at demanding workloads, ensuring correct operation and cooling of the processor.

Downloads

Download data is not yet available.

References

Bardina, J., Huang, P., y Coakley, T. (1997). Turbulence modeling validation, testing, and development. NASA Technical Memorandum (110446), 1-88.
Blet, N., Lips, S., y Sartre, V. (2017). Heats pipes for temperature homogenization: A literature review. Applied Thermal Engineering, 118, 490-509. https://doi.org/10.1016/j.applthermaleng.2017.03.009
Chan, C. W., Siqueiros, E., Ling-Chin, J., Royapoor, M., y Roskilly, A. P. (2015). Heat utilisation technologies: A critical review of heat pipes. Renewable and Sustainable Energy Reviews, 50, 615-627. https://doi.org/10.1016/j.rser.2015.05.028
Chen, X., Ye, H., Fan, X., Ren, T., y Zhang, G. (2016). A review of small heat pipes for electronics. Applied Thermal Engineering, 96, 1-17. https://doi.org/10.1016/j.applthermaleng.2015.11.048
Dillig, M., Leimert, J., y Karl, J. (2014). Planar high temperature heat pipes for SOFC/SOEC stack applications. Fuel Cells, 14(3), 479-488. https://doi.org/10.1002/fuce.201300224
Dinker, A., Agarwal, M., y Agarwal, G. D. (2017). Heat storage materials, geometry and applications: A review. Journal of the Energy Institute, 90(1), 1–11. https://doi.org/10.1016/j.joei.2015.10.002
Faghri, A. (2014). Heat Pipes: Review, Opportunities and Challenges. Frontiers in Heat Pipes, 5(1). https://doi.org/10.5098/fhp.5.1
Garc, P. (2018). Control por modos deslizantes de un sistema de intercambio de calor : validación experimental (Sliding modes control for a heat Exchange system : experimental validation). Enfoque UTE, 110-119.
Garro, S., Díaz, L. A., Liang, J., Martínez, F., Meneses, W., Ortega, H., … Stradi, B. (2012). Modelación y simulación de disipadores de calor para procesadores de computadora en COMSOL Multiphysics. Tecnología En Marcha, 25(3), 70-80.
Hung, Y. M., y Seng, Q. (2011). Effects of geometric design on thermal performance of star-groove micro-heat pipes. International Journal of Heat and Mass Transfer, 54(5-6), 1198–1209. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.070
Jafari, D., Franco, A., Filippeschi, S., y Di Marco, P. (2016). Two-phase closed thermosyphons: A review of studies and solar applications. Renewable and Sustainable Energy Reviews, 53, 575-593. https://doi.org/10.1016/j.rser.2015.09.002
Jafari, D., Shamsi, H., Filippeschi, S., Di Marco, P., y Franco, A. (2017). An experimental investigation and optimization of screen mesh heat pipes for low-mid temperature applications. Experimental Thermal and Fluid Science, 84, 120-133. https://doi.org/10.1016/j.expthermflusci.2017.02.005
Khalifa, A., Tan, L., Date, A., y Akbarzadeh, A. (2015). Performance of suspended finned heat pipes in high-temperature latent heat thermal energy storage. Applied Thermal Engineering, 81, 242–252. https://doi.org/10.1016/j.applthermaleng.2015.02.030
Lee, J., y Kim, S. J. (2017). Effect of channel geometry on the operating limit of micro pulsating heat pipes. International Journal of Heat and Mass Transfer, 107, 204-212. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.036
Lee, S., Pandiyan, D., Seo, J. S., Phelan, P. E., y Wu, C. J. (2016). Thermoelectric-based sustainable self-cooling for fine-grained processor hot spots. Proceedings of the 15th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2016, 847–856. https://doi.org/10.1109/ITHERM.2016.7517635
Orr, B., Akbarzadeh, A., Mochizuki, M., y Singh, R. (2016). A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Applied Thermal Engineering, 101, 490-495. https://doi.org/10.1016/j.applthermaleng.2015.10.081
Reay, D., y Harvey, A. (2013). The role of heat pipes in intensified unit operations. Applied Thermal Engineering, 57(1-2), 147.153. https://doi.org/10.1016/j.applthermaleng.2012.04.002
Shabgard, H., Allen, M. J., Sharifi, N., Benn, S. P., Faghri, A., y Bergman, T. L. (2015). Heat pipe heat exchangers and heat sinks: Opportunities, challenges, applications, analysis, and state of the art. International Journal of Heat and Mass Transfer, 89, 138-158. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.020
Tang, H., Tang, Y., Wan, Z., Li, J., Yuan, W., Lu, L., … Tang, K. (2018). Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Applied Energy, 223(mayo), 383–400. https://doi.org/10.1016/j.apenergy.2018.04.072
Velasco Roldán, L., Goyos Pérez, L., Delgado García, R., y Freire Amores, L. (2017). Instalación para medición de conductividad térmica en composites basados en residuos de biomasa. Enfoque UTE, 7(2), 69. https://doi.org/10.29019/enfoqueute.v7n2.96

Published

2019-06-28

How to Cite

Toapanta Ramos, L. F., Andrade, C., Dávalos Álvarez, E., Landázuri Zaldumbide, S., & Quitiaquez, W. (2019). Thermal Analysis of heat sink with Heat Pipes for High Performance Processors. Enfoque UTE, 10(2), pp. 39 – 51. https://doi.org/10.29019/enfoque.v10n2.469

Issue

Section

Automation and Control, Mechatronics, Electromechanics, Automotive