Review of the state of art of DX-SAHP systems to obtain domestic hot water
DOI:
https://doi.org/10.29019/enfoque.v11n2.565Keywords:
heat pumps, alternative refrigerants, solar energy, DX-SAHP, solar collectorAbstract
The investigation purpose is to elaborate a detailed review about previous published investigations with direct-expansion solar-assisted heat pumps (DX-SAHP) used for water heating, in the last years. The growing energy consumption, the using of refrigerants that weaken the ozone layer, the greenhouse gases emission to the atmosphere and the global warming effect are the main problems that the conventional water heating systems present. Using hydrocarbons as refrigerants represents a pollution reduction and it is also the best option to replace hydrochlorofluorocarbons and chlorofluorocarbons, due to their low values of global warming potential and ozone depletion potential, close to 0. A DX-SAHP system takes advantage of the thermal solar energy directly by using a bare flat-plate solar collector. These systems provide domestic hot water over 50 °C and heating water volumes until 200 liters reaching COP values higher than 4. Solar energy and the using of alternative refrigerants with a low environmental impact are proposed to reach this purpose.
Downloads
References
ACAIRE. (2013). Refrigerantes de Hidrocarburos. Bogotá.
Aguilar, F., Aledo, S., y Quiles, P. (2016). Experimental study of the solar photovoltaic contribution for the domestic hot water production with heat pumps in dwellings. Applied Thermal Engineering(101), 379-389.
ASHRAE. (28 de Mayo de 2019). Safety Standard for Refrigeration Systems. Obtenido de https://webcache.googleusercontent.com/search?q=cache:CLE84mzAxtIJ:https://www.ashrae.org/File%2520Library/docLib/StdsAddenda/15_2016_f_20170207.pdf+ycd=3yhl=esyct=clnkyclient=firefox-b
Bauer, A., y Menrad, K. (2019). Standing up for the Paris Agreement: Do global climate targets influence individuals’ greenhouse gas emissions? Environmental Science and Policy, 99, 72-79.
Benavides, D., Jurado, F., y González, L. (2018). Data analysis and tools applied to modeling and simulation of a PV system in Ecuador. Enfoque UTE, 9, 1-12.
Bolaji, B., y Huan, Z. (2013). Ozone depletion and global warming: Case for the use of natural refrigerant –a review. Renewable and Sustainable Energy Reviews(18), 49-54.
Buker, M., y Riffat, S. (2016). Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renewable and Sustainable Energy Reviews(55), 399-413.
Cai, J., Ji, J., Wang, Y., y Huang, W. (2016). Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump. Renewable Energy(93), 280-290.
Cai, J., Li, Z., Ji, J., y Zhou, F. (2019). Performance analysis of a novel air source hybrid solar assisted pump. Renewable Energy, 139, 1133-1145.
Calise, F., Dentice D´Accadia, M., Figaj, R., y Vanoli, L. (2016). A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization. Energy(95), 346-366.
Cengel, Y., y Boles , M. (2015). Thermodynamics An Engineering Approach. New York: McGraw-Hill Education.
Cerit, E., y Erbay, B. (2013). Investigation of the effect of rollbond evaporator design on the performance of direct expansion heat pump experimentally. Energy Conversion and Management(72), 163-170.
Charters, W., y Taylor, L. (1976). Some performance characteristics of a solar boosted heat pump, in:Proceedings of the IIR Conference Towards and Ideal Food Chain. Refrigerant Science Technology, 64, 1-8.
Chow, T., Pei, G., Fong, K., Lin, Z., Chan, A., y He, M. (2010). Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong. Applied Energy(87), 643-649.
Colangelo, G., Favale, E., Miglietta, P., y De Risi, A. (2016). Innovation in flat solar thermal collectors: A review of the last ten years experimental results. Renewable and Sustainable Energy Reviews(57), 1141-1159.
Combariza, H., González, P., y Castilla, C. (2018). Numerical simulation and experimental validation of a solar-assisted heat pump system for heating residential water. International Journal of Refrigeration(86), 28-39.
Deng, W., y Yu, J. (2016). Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater. Energy Conversion and Management(120), 378-387.
Duarte, W., Paulino, T., Pabon, J., Sawalha, S., y Machado, L. (2019). Refrigerants selection for a direct expansion solar assisted heat pump for domestic hot water. Solar Energy, 184, 527-538.
Fernández, J., Piñeiro, C., Dopazo, A., Fernández, F., y Sousa, P. (2012). Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions. Energy Conversion and Management(59), 1-8.
Gadea, M., y Gonzalo, J. (2019). Trends in distributional characteristics: Existence of global warming. Journal of Econometrics, 1-22.
Gallo , C., Faccilongo, N., y La Sala, P. (2017). Clustering analysis of environmental emissions: A study on Kyoto Protocol's impact on member countries. Journal of Cleaner Production, 1-19.
GASSERVEI. (08 de Diciembre de 2018). Ficha técnica R134a. Recuperado el 24 de 01 de 2018, de https://www.gas-servei.com/images/Ficha_tecnica_R134A.pdf
GASSERVEI. (27 de Febrero de 2019). Ficha técnica R290 (Propano). Obtenido de
https://www.gas-servei.com/images/Ficha-tecnica-R290.pdf
GASSERVEI. (27 de Febrero de 2019). Ficha técnica R404A. Obtenido de
https://www.gas-servei.com/images/Ficha-tecnica-R404A.pdf
GASSERVEI. (27 de Febrero de 2019). Ficha técnica R407C. Obtenido de
https://www.gas-servei.com/images/Ficha-tecnica-R407C.pdf
GASSERVEI. (27 de Febrero de 2019). Ficha técnica R410A. Obtenido de
https://www.gas-servei.com/images/Ficha-tecnica-R410A.pdf
GASSERVEI. (27 de Febrero de 2019). Ficha técnica R600a (Isobutano). Obtenido de https://www.gas-servei.com/images/Ficha_tecnica_R600A.pdf
Ghoubali, R., Byrne, P., y Bazantay, F. (2017). Refrigerant charge optimisation for propane heat pump water heaters. International Journal of Refrigeration(76), 230-244.
Gorozabel, F., y Carbonell, T. (2016). Actualidad y perspectivas de una bomba de calor de expansión directa con energía solar. Ingeniería Mecánica, XIX(1), 49-58.
Gorozabel, F., Chaturvedi, S., y Almogbel, A. (2005). Analysis of a direct expansion solar assisted heat pump using different refrigerants. Energy Conversion y Management(46), 2614 - 2624.
Haceb. (25 de Agosto de 2019). Calentadores de agua que funcionan con gas. Obtenido de http://www.haceb.com/LinkClick.aspx?fileticket=UOHWcE0xdEA%3dyportalid=0
Harby, K. (2017). Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renewable and Sustainable Energy Reviews(73), 1247-1264.
Homecenter. (14 de Marzo de 2019). Calentador de paso eléctrico. Obtenido de http://www.homecenter.com.co/homecenter-co/product/137832/Calentador-de-paso-electrico-110v-5.5-kW/137832
Hossain, M., Saidur, R., Rahim, N., Islam, M., Ahamed, J., y Rahman, M. (2011). Review on solar water heater collector and thermal energy performance of circulating pipe. Renewable and Sustainable Energy Reviews(15), 3801-3812.
Huang, W., Ji, J., Xu, N., y Li, G. (2016). Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions. Applied Energy(171), 656-666.
International Energy Agency. (03 de Agosto de 2019). World: Indicators. Obtenido de https://www.iea.org/statistics/statisticssearch/report/?country=WORLDyproduct=indicatorsyyear=2014
Jara , N., e Isaza, C. (2015). Análisis comparativo de sistemas de refrigeración doméstica utilizando refrigerantes R600a y R134a. I+T+C Investigación, TEcnología y Ciencia, 1-15.
Junkers. (27 de Julio de 2019). Bombas de calor de agua caliente sanitaria. Obtenido de https://junkers-es.resource.bosch.com/media/documentacion/agua_caliente/folletos_comerciales/2017_1/ficha_supraeco_swo_swi_v1.pdf
Kalogirou, S. (2014). Solar energy engineering. Burlington: Elsevier.
Kannan, N., y Vakeesan, D. (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews(62), 1092-1105.
Kasera, S., y Chandra, S. (2017). Performance of R407C as an alternate to R22: A review. Energy Procedia(109), 4-10.
Kong, X., Li, Y., Lin, L., y Yang, Y. (2017). Modeling evaluation of a direct-expansion solar-assisted heat pump water heater using R410A. International Journal of Refrigeration(76), 136-146.
Krockenberger, K., DeGrove, J., Hutzel, W., y Foreman, C. (2014). International High Performance Buildings. Design of a Heat Pump Assisted Solar Thermal System. Indiana.
Kuang, Y., y Wang, R. (2006). Performance of a multi-functional direct-expansion solar assisted heat pump system. Solar Energy, 80, 795-803.
Li, H. (2013). Study on Alternative Refrigerants for Direct Expansion Solar Assisted Heat Pump System. Applied Mechanics and Materials, 361, 267-270.
Maamoun, N. (2019). The Kyoto protocol: Empirical evidence of a hidden success. Journal of Environmental Economics and Management, 95, 227-256.
Malali, P., Chaturvedi, S., y Abdel-Salam, T. (2016). An approximate method for prediction of thermal performance of direct expansion-solar assisted heat pump (DX-SAHP) systems for water heating applications. Energy Conversion and Management(127), 416-423.
Ministerio del Ambiente. (30 de Julio de 2019). Protocolo de Kioto (pK). Obtenido de http://www.minambiente.gov.co/index.php/component/content/article/458-plantilla-cambio-climatico-14
Miyamoto, M., y Takeuchi, K. (2019). Climate agreement and technology diffusion: Impact of the Kyoto Protocol on international patent applications for renewable energy technologies. Energy Policy, 129, 1331-1338.
Mohamed, E., Riffat, S., y Omer, S. (2017). Low-temperature solar-plate-assisted heat pump: A developed design for domestic applications in cold climate. International Journal of Refrigeration(81), 134-150.
Mohanraj, M., Belyayev, Y., Jayaraj, S., y Kaltayev, A. (2018). Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications). Renewable and Sustainable Energy Reviews(83), 90-123.
Moreno-Rodriguez, A., Garcia-Hernando, N., González-Gil, A., e Izquierdo, M. (2013). Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating. Energy(60), 243-253.
Nawas, K., Shen, B., Elatar , A., Baxter , V., y Abdelaziz, O. (2017). R290 (propane) and R600a (isobutane) as natural refrigerants for residential heat pump water heaters. Applied Thermal Engineering(127), 870-833.
Nawaz, K., Shen, B., Elatar, A., Baxter, V., y Abdelaziz, O. (2017). R-1234yf and R-1234ze(E) as low-GWP refrigerants for residential heat pump water heaters. International Journal of Refrigeration.
Pandey, K., y Chaurasiya, R. (2017). A review on analysis and development of solar flat plate collector. Renewable and Sustainable Energy Reviews(67), 641-650.
Ravi, P., Krishnaiah, A., Akella, S., y Azizuddin, M. (2015). Evaluation Of Inside Heat Transfer Coefficient of Roll Bond Evaporator for Room Air Conditioner. International Journal of Innovative Research in Science, Engineering and Technology, IV, 3378-3384.
REFECOL. (06 de Junio de 2019). Ficha técnica R22. Recuperado el 20 de 11 de 2017, de http://www.refecol.com.ec/wp-content/uploads/2014/06/FichaTecnica-R22.pdf
Secretaría Nacional de Planificación y Desarrollo. (2013). Plan Nacional de Desarrollo / Plan Nacional para el Buen Vivir 2013 - 2017. Quito.
Sharma, A. (2017). An investigation on comparison of direct expansion solar assisted heat pump water heater with an air-source heat pump water heater. International Journal of Latest Engineering and Management Research, II(3), 44-50.
Sheu, E., y Mitsos, A. (2013). Optimization of a hybrid solar-fossil fuel plant: Solar steam reforming of methane in a combined cycle. Energy, 51, 193-202.
Shi, G.-H., Aye, L., Li, D., y Du, X.-J. (2019). Recent advances in direct expansion solar assisted heat pump systems: A review. Renewable and Sustainable Energy Reviews, 109, 349-366.
Sporn, P., y Ambrose, E. (1955). Proceedings of the world symposium on applied solar energy. The heat pump and solar energy. Phoenix.
Sun, X., Wu, J., Dai, Y., y Wang, R. (2014). Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating system. Applied Thermal Engineering(66), 571-579.
Tagliafico, L., Scarpa, F., y Valsuani, F. (2014). Direct expansion solar assisted heat pumps e A clean steady state approach for overall performance analysis. Applied Thermal Engineering(66), 216-226.
Vargas, J., Medina, J., Pozo, M., Avila, E., Pozo, N., y Salazar, G. (2019). Análisis del uso de micro convertidores DC/DC enfocados en la extracción máxima de energía en una granja fotovoltaica. Enfoque UTE, 10, 205-217.
Velasco, L., Goyos, L., Delgado, R., y Freire, L. (2016). Instalación para medición de conductividad térmica en composites basados en residuos de biomasa. Enfoque UTE, 7, 69-81.
Wang, R., y Ge, T. (2016). Advances in solar heating and cooling. Cambridge: Elsevier Ltd.
Wu, D., Hu, B., y Wang, R. (2018). Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants. Renewable Energy(116), 775-785.
Yousefi, M., y Moradali, M. (2015). Thermodynamic analysis of a direct expansion solar assisted heat pump water heater. Journal of Energy in Southern Africa, XXVI(2), 110-117.
Zhang, D., Wu, Q., Li, J., y Kong, X. (2014). Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system. Applied Thermal Engineering(73), 522-528.
Zhou, X., y Feng, C. (2016). The impact of environmental regulation on fossil energy consumption in China: Direct and indirect effects. Cleaner Production.
Zhu, M., Xie, H., Zhang, B., y Guan, X. (2013). The Characteristics of the Evaporator/Evaporator for Direct Expansion Solar Assisted Heat Pump System. Journal of Power and Energy Engineering(1), 73-76.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Enfoque UTE
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.