Numerical analysis of the flow behavior in the throat section of an experimental conical nozzle

DOI:

https://doi.org/10.29019/enfoqueute.676

Keywords:

Oblique shock; Fluctuation; Throat length; Conical nozzle; Simulation

Abstract

The flow pattern in supersonic nozzles is defined by the aerodynamic profiles of the geometry of the internal walls, among other parameters, the throat being a critical section. In the present work, the objective is to analyze the behavior of the flow in the straight section of the throat of an experimental conical nozzle of a solid fuel probe rocket engine. The over-expanded flow was simulated with the ANSYS-Fluent code in a 2D computational domain, using the RANS model and the Menter turbulence model, and the Sutherland equation for viscosity as a function of the temperature. Five case studies were performed for the throat length in the range of 1-10 mm. Fluctuations of Mach number, pressure and temperature, oblique shock waves in the throat section were obtained for the length of 10 mm; for shorter lengths the intensity of the shock magnitude decreased. It is concluded that, for the throat length of 1 mm, the flow is transonic without the presence of oblique shocks. In the diverging section, shock waves vary in intensity and change position.

Downloads

Download data is not yet available.

References

Anderson, J. (2019). Hipersonic and high temperature gas dynamics. AIAA Education Series. https://doi.org/10.2514/4.105142

Anderson, J. D. (2017). Fundamentals of Aerodynamics. McGraw-Hill. https://bit.ly/35sJobM

ANSYS. (2019). Ansys Fluent 2019 R1: Theory guide. https://bit.ly/3jAofBM

Arora, R., & Vaidyanathan, R. (2015). Experimental Investigation of Flow Through Planar Double Divergent Nozzles. Acta Astronautica 112, 200-216. https://doi.org/10.1016/j.actaastro.2015.03.020

Barato, F., Ghilardi, M., Santi, M., & Pavarin, D. (2016, 25-27 de julio). Numerical Optimization of Hybrid Sounding Rockets through Coupled Motor-Trajectory Simulation [sesión de conferencia]. 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, Estados Unidos. https://doi.org/10.2514/6.2016-4749

Back, L. H., & Cuffel, R. F. (1966). Detection of Oblique Shocks in a Conical Nozzle with a Circular-Arc Throat. AIAA journal, 4(12), 2219-2221. https://doi.org/10.2514/3.3881

Blazek, J. (2015). Computational Fluid Dynamics: Principles and Applications. Butterworth-Heinemann. https://doi.org/10.1016/C2013-0-19038-1

Canales, J. (2013, 27 de marzo). Sounding Rocket Program in Perú [sesión de conferencia]. ARC AIAA SpaceOps 2012 Conference, Estocolmo, Suecia. https://doi.org/10.2514/6.2012-1275893

Cengel, Y. A., & Cimbala, J. M. (2019). Fluid Mechanics: Fundamentals and Applications. McGraw-Hill. https://bit.ly/3kqCBWv

Dagaro, M., Peralta, L., Ludueña, G. A., Lorenzon, D., García, J. O., Galeasso, A., & Bustamante, J. (2019). Sobre el diseño y construcción de un túnel de viento supersónico bidimensional. Revista FCEFyN, 6(2), 35-40. https://revistas.unc.edu.ar/index.php/FCEFyN/article/view/24380

Ding, H., Wang, C., & Wang, G. (2017). Transient Conjugate Heat Transfer in Critical Flow Nozzle. International Journal of Heat and Mass Transfer, 104, 930-942. https://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.021

De Gouyon, L. (2020, 9 de abril). The Birth of the Brazilian Space Program. Space Legal Issues. https://bit.ly/31yMt9i

De León, P. (2016, 26-30 de septiembre). The Cóndor Project [sesión de conferencia]. 67th International Astronautical Congress (IAC), Guadalajara, México. https://bit.ly/3mfdSVD

Giglmaier, M., Quaatz, J. F., Gawehn, T., Gulhan, A.,  Adams, N. A. (2014). Numerical and Experimental Investigations of Pseudo-Shock Systems in a Planar Nozzle: Impact of Bypass Mass Flow due to Narrow Gaps. Shock Waves, 24, 139-156. https://doi.org/10.1007/s00193-013-0475-2

Heeg, F., Kilzer, L., Seitz, R., & Stoll, E. (2020). Design and Test of a Student Hybrid Rocket Engine with an External Carbon Fiber Composite Structure. Aerospace, 7(57), 1-19. https://doi.org/10.3390/aerospace7050057

Huh, J., Ahn, B., Kim, Y., Song, H., Yoon, H., & Kwon, S. (2017). Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST. International Journal of Aeronautical and Space Sciences, 18(3), 512-521. https://dx.doi.org/10.5139/IJASS.2017.18.3.512

Kostic, O., Stefanovic, Z., & Kostic, I. (2017). Comparative CFD Analyses of a 2D Supersonic Nozzle Flow with Jet Tab and Jet Vane. Tehnicki Vjesnik, 24(5), 1335-1347. https://doi.org/10.17559/TV-20160208145336

Lacruz, L., Parco, M. A., Santos, R., Torre, C., Ferreira, J., & Benítez, P. (2016). Análisis experimental de las oscilaciones de presión interna en un motor de combustible sólido para cohete sonda. Revista Ciencia e Ingeniería, 37(2), 81-88. https://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/7443

Nair, P. P., Suryan, A., & Dong, H. (2020). Computational Study on Reducing Flow Asymmetry in Over-Expanded Planar Nozzle by Incorporating Double Divergence. Aerospace Science and Technology, 100, 1-18. https://doi.org/10.1016/j.ast.2020.105790

Nilsen, C., Meriam, S., & Meyer S. (2019, 7-11 de enero). Purdue Liquid Oxygen-Liquid Methane Sounding Rocket [sesión de conferencia]. AIAA SciTech Forum, San Diego, California, Estados Unidos. https://doi.org/10.2514/6.2019-0614

Menter, F. (1994). Two Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32, 1598-1605. https://doi.org/10.2514/3.12149

Morales, G. A., & Mendoza, L. A. (2017). Diseño detallado e integración de un sistema de recuperación para el cohete sonda Libertador 1 [Tesis de grado, Fundación Universitaria Los Libertadores, Colombia]. https://bit.ly/34nq00J

Östlund, J., & Muhammed, B. (2005). Supersonic Flow Separation with Application to Rocket Engine Nozzles. ASME, Applied Mechanics Reviews, 58, 143-177. https://doi.org/10.1115/1.1894402

Okninski, A., & Wolanski, P. (2015). Development of the Polish Small Sounding Rocket Program. Acta Astronautica, 108, 46-56. https://doi.org/10.1016/j.actaastro.2014.12.001

Parco, M. A. (2014). Análisis experimental de temperaturas en la tobera de un motor de cohete de combustible sólido [Tesis de maestría, Universidad de Los Andes, Venezuela. Tesis no publicado].

Sutton, G. P., & Biblarz, O. (2016). Rocket Propulsion Elements. John Wiley & Sons. https://bit.ly/3jocVZa

Stark, R., & Génin, C. (2016). Optimization of a Rocket Nozzle Side Load Reduction Device. Journal of Propulsion and Power, 32(6), 1395-1402. https://doi.org/10.2514/1.B35971

Shimshi, E., Ben-Dor, G., Levy, A., & Krothapalli, A. (2015). Asymmetric and Unsteady Flow Separation in High Mach Number Planar Nozzles. IJASAR, 2(6), 60-80. https://dx.doi.org/10.19070/2470-4415-150008

Schlichting, H., & Klaus, G. (2017). Boundary-layer Theory. Springer-Verlag. https://www.springer.com/gp/book/9783662529171

Schüttauf, K., Stamminger, A., & Lappöhn, K. (2017). The Stern Project-Hands on Rockets Science for University Student. https://bit.ly/31Aj52l

Schulz, W., Cid, G., & Elaskar, S. (2020). 2015-2020 Academic, Research and Service Report of the Aeronautical Department of the National of Córdoba. IJMCER, 2(4), 104-116. https://bit.ly/31wiPkQ

Tolentino, S. L., Ferreira, J., Parco, M. A., Lacruz, L., & Marcano, V. (2017). Simulación numérica del flujo sobre-expandido en la tobera cónica experimental ULA-1A XP. Revista Universidad, Ciencia y Tecnología, 21(84), 126-133. https://www.uct.unexpo.edu.ve/index.php/uct/article/view/803

Tolentino, S. L., & Caraballo S. (2017). Simulación numérica del flujo de aire con onda de choque en un difusor transónico. Revista Universidad, Ciencia y Tecnología, 21(82), 4-15. https://www.uct.unexpo.edu.ve/index.php/uct/article/view/784/630

Tolentino, S. L. (2019). Evaluation of Turbulence Models for the Air Flow in a Planar Nozzle. Ingenius, 22, 25-37. https://doi.org/10.17163/ings.n22.2019.03

Tolentino, S. L. (2020). Evaluación de modelos de turbulencia para el flujo de aire en un difusor transónico. Revista Politécnica, 45(1), 25-38. https://doi.org/10.3333/rp.vol45n1.03

Tolentino, S. L., Nakka, R., Caraballo, S., & Mírez, J. (en prensa). Simulación numérica del flujo sub-expandido en la tobera cónica experimental Helios-X. Ingenius.

Vera, M. N., Guglielminotti, C. R., & Moreno, C. D. (2015). La participación de la Argentina en el campo espacial: Panorama histórico y actual. Ciencia, Docencia y Tecnología, 26(51), pp. 326-349. https://www.pcient.uner.edu.ar/cdyt/article/view/89

Verma, S., Chidambaranatathan, M., & Hadjadj, A. (2018). Analysis of Shock Unsteadiness in a Supersonic Over-Expanded Planar Nozzle. European Journal of Mechanics/B Fluids, 68, 55-65. https://doi.org/10.1016/j.euromechflu.2017.11.005.

Verberne, O., Boiron, A. J., Faenza, M. G., & Haemmerli, B. (2015, 27-29 de julio). Development of the North Star Sounding Rocket: Getting Ready for the First Demonstration Launch [sesión de conferencia]. Propulsion and Energy Forum. 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, FL, Estados Unidos. https://doi.org/10.2514/6.2015.4045

Villanueva, F. M. (2018, 3-10 de marzo). Sounding Rocket Development Program for Perú [sesión de conferencia]. IEEE Aerospace Conference, Big Sky, MT. Estados Unidos. https://ieeexplore.ieee.org/abstract/document/8396555

White, F. (2016). Fluid Mechanics. McGraw-Hill Education. https://www.mheduction.ca/fluid-mechanics-9780073398273-can-group

Zebiri, B., Piquet, A., & Hadjadj, A. (2020). Analysis of Shock-Wave Unsteadiness in Conical Supersonic Nozzle. Aerospace Science and Technology, 105, 1-15. https://doi.org/10.1016/j.ast.2020.106060

Zucker, R. D., & Biblarz, O. (2019). Fundamentals of Gas Dynamics. John Wiley & Sons. https://bit.ly/34jQEYc

Published

2021-01-04

How to Cite

Numerical analysis of the flow behavior in the throat section of an experimental conical nozzle. (2021). Enfoque UTE, 12(1), pp. 12 – 28. https://doi.org/10.29019/enfoqueute.676

Issue

Section

Miscellaneous