Model for Estimating Soil Chemical Properties with RGB Drone Images

Authors

DOI:

https://doi.org/10.29019/enfoqueute.1078

Keywords:

precision agriculture, spectral indices, Phantom 4 Pro, PIX4Dmapper, ArcGIS

Abstract

Precision agriculture optimizes crop management by providing accurate data on soil chemical properties, thereby improving agricultural productivity and sustainability. This study aims to develop models to estimate soil chemical properties, such as pH, electrical conductivity (EC), and organic matter (OM), by analyzing drone-captured RGB images. The methodology included photogrammetric flights with a DJI Phantom 4 Pro drone equipped with a 20 Mpx camera and simultaneous sampling, laboratory analysis and on-site measurements, with Royal Eijkelkamp EC meter set voor grond multiparameter sensors and pH meter set for soil and water. The aerial images were processed with the PIX4Dmapper software, to generate the orthophoto and spectral bands. With the resulting orthophoto of 1.6 cm/pixel, eight spectral indices were calculated, using the spatial analysis tools of ArcGIS software. The in situ results showed an average pH value of 5.83, indicating a slightly acidic soil, and an EC of 1.09 dS/m, suggesting a soil with a low concentration of dissolved salts. Laboratory analyses showed a medium-high content of OM, with an average of 5.19 %. A strong correlation was found between OM and pH_index with coefficients of determination R2=0.55, while moderate correlations were also observed between pH with pH_index and EC with sal_index6 with coefficients of determination R2=-0.39 and R2=0.42 respectively. The aforementioned results allowed the generation of two models for the estimation of these variables from RGB images.

Downloads

Download data is not yet available.

References

[1] L. Toledo, R. L. Changoluisa Chiguano and O. Viteri Salazar, “Influencia de la agricultura en la economía y su contraste frente a los objetivos de desarrollo sostenible: caso Ecuador,” Revista Científica de Ciencias Sociales y Humanas. vol. 2, no. 83, pp. 28-49, 2023. https://doi.org/10.33324/uv.v2i83.697

[2] F. González Soto, D. Ullón and J. Loján, “Análisis multitemporal de cambios de uso del suelo en la isla Santa Cruz, archipiélago de las Galápagos, periodo 1991-2023,” Revista Ciencia y Tecnología, vol. 17, no. 1, pp. 1-9, 2024. https://doi.org/10.18779/cyt.v17i1.521

[3] R. Vicente Salar, M. Castelló Bueno, S. Logan de la Rosa and J. C. Padró García, “Efecto de los usos y las cubiertas del suelo y las políticas ambientales en el comportamiento de las temperaturas superficiales en campus universitarios: El caso de la Universidad Autónoma de Barcelona,” Revista Documents d’Analisi Geográfica, vol. 70, no. 2, pp. 261-289, 2024. https://doi.org/10.5565/rev/dag.875

[4] W. Zárate Martínez, M. Felipe Victoriano, F. E. Martínez Silva, K. Moreno León, J. L., Arispe Vázquez and J. F. Díaz Nájera, “Propiedades químicas del suelo y calidad del agua en Miahuatlán de Porfirio Díaz y Ejutla de crespo, Oaxaca, México,” Revista de Ecosistemas y Recursos Agropecuarios, vol. 11, no. 1, pp. 2-10, 2024. https://doi.org/10.19136/era.a11n1.3948

[5] A. Vélez, M. Vera, S. Valdez, D. Martínez and F. Cutipa, “Methods to determine enzymatic activity in contaminated soils,” South Sustainability, vol. 5, no. 1, pp. 1-11, 2024. https://doi.org/10.21142/SS-0501-2024-e092

[6] A. Gonzales and L. Castellanos, “Impacto de diferentes prácticas agrícolas sobre las características fisicoquímicas del suelo: un análisis crítico,” Revista Ambiental Agua, Aire y Suelo, vol. 15, no. 1, 90-105, 2024. https://doi.org/10.24054/raaas.v15i1.2916

[7] R. Enesi, M. Dyck, M. Thilakarathna, S. Strelkov, and L. Gorim, “Calibrated SoilOptix estimates of soil pH and exchangeable cations in three agricultural fields in western Canada – implications for managing spatially variable soil acidity”. Journal Heliyon, vol. 10 no. 17, pp. 1–18, 2024. https://doi.org/10.1016/j.heliyon.2024.e37106

[8] S. Boubehziz, C. Piccini, M. A. Jiménez González and G. Almendros, “Distribución espacial de los descriptores de calidad del carbono orgánico del suelo que determinan los factores que afectan su secuestro en el Noreste de Argelia”, Revista de Gestión Ambiental, vol. 358, pp. 1-10, 2024. https://doi.org/10.1016/j.jenvman.2024.120772

[9] M. Krestenitis, E. Raptis, A. Kapoutsis, K. Ioannidis, E. Kosmatopoulos and S. Vrochidis, “Overcome the fear of missing out: active sensing UAV scanning for precision agriculture,” Robotics and Autonomous Systems, pp. 1-13, 2024. https://doi.org/10.1016/j.robot.2023.104581

[10] J. M. Guzmán Albores, M. de J. Matuz Cruz, J. Y. Arana Llanes, E. López Carrasco, V. Gómez Vázquez and N. González Cárdenas, “Avances y perspectivas de la agricultura de precisión para la sostenibilidad agrícola”, XIKUA Boletín Científico de La Escuela Superior de Tlahuelilpan, vol. 12, no. 24, pp. 1-6, 2024. https://doi.org/10.29057/xikua.v12i24.12790

[11] B. Petrović, R. Bumbálek, T. Zoubek, R. Kuneš, L. Smutný and P. Bartoš, “Application of precision agriculture technologies in Central Europe-review,” Journal of Agriculture and Food Research, vol. 15, no. 1, pp. 1-10, 2024, https://doi.org/10.1016/j.jafr.2024.101048

[12] L. E. Sánchez Palacios, F. R. Martínez Alcivar, S. T. Torres Sánchez, A. C. Lascano Montes and G. N. Terán Guajala, “Agricultura de Precisión en El Ecuador”, Ciencia Latina Revista Científica Multidisciplinar, vol. 8, no. 1, pp. 1532-1542, 2024. https://doi.org/10.37811/cl_rcm.v8i1.9547

[13] R. Nitin Lilandhar, P. C. Saurabh, “Detección remota (rs), uav/drones y aprendizaje automático (ml) como potentes técnicas para la agricultura de precisión: eficaces aplicaciones en agricultura”. International Research Journal of Modernization in Engineering Technology and Science, vol. 5, pp. 4375-4395, 2023. https://doi.org/10.56726/irjmets36817

[14] P. Vigneault, J. Lafond-Lapalme, A. Deshaies, K. Khun, S. de la Sablonnière, M. Filion, L. Longchamps and B. Mimee, “An integrated data-driven approach to monitor and estimate plant-scale growth using UAV”, ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 11, pp. 1-13, 2024. https://doi.org/10.1016/j.ophoto.2023.100052

[15] Y. Mao et al., “Rapid monitoring of tea plants under cold stress based on UAV multi-sensor data”, Computers and Electronics in Agriculture, vol. 213, pp. 1-13, 2023. https://doi.org/10.1016/j.compag.2023.108176

[16] D. Kaimaris, “Aerial Remote Sensing Archaeology—A Short Review and Applications”, Article Land, vol. 13, no. 7, pp. 1-27. 2024. https://doi.org/10.3390/land13070997

[17] M. Raj, H. N. B., S. Gupta, M. Atiquzzaman, O. Rawlley, and L. Goel, “Leveraging precision agriculture techniques using UAVs and emerging disruptive technologies,” Energy Nexus, vol. 14, pp. 1-25, 2024. https://doi.org/10.1016/j.nexus.2024.100300

[18] J. Tan, J. Ding, Z. Wang, L. Han, X. Wang, Y. Li, Z. Zhang, S. Meng, W. Cai, and Y. Hong, “Estimating soil salinity in mulched cotton fields using UAV-based hyperspectral remote sensing and a Seagull Optimization Algorithm-Enhanced Random Forest Model,” Computers and Electronics in Agriculture, vol. 221, pp. 1-10, 2024. https://doi.org/10.1016/j.compag.2024.109017

[19] Y, Han, “Application of Unmanned Aerial Vehicle Remote Sensing for Agricultural Monitoring”, E3S Web of Conferences, pp. 1-6, 2024. https://doi.org/10.1051/e3sconf/202455302022

[20] G. Linets, A. Bazhenov, S. Malygin, N. Grivennaya, S. Melnikov and V. Gorchakov, “Method for remote measurement of specific conductivity and moisture of subsurface soil horizons,” Smart Agricultural Technology, vol. 8, pp. 1-9, 2024. https://doi.org/10.1016/j.atech.2024.100503

[21] M, Ngabire et al., “Mapeo de la salinización del suelo en diferentes tipos de cobertura terrestre arenosa en la cuenca del rio Shiyang: un enfoque de teledetección y regresión lineal múltiple,” Remote Sensing Applications: Society and Environment, vol. 28, pp. 1-18, 2024. https://doi.org/10.1016/j.rsase.2022.100847

[22] O. Yuzugullu, N. Fajraoui and F. Liebisch, “Soil Texture and Ph Mapping Using Remote Sensing and Support Sampling,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, pp. 1-21, 2024. https://doi.org/10.1109/JSTARS.2024.3422494

[23] INAMHI, “Datos meteorológicos de la estación La Teodomira Manabí, Santa Ana,” Inst. Nac. de Meteorología e Hidrología, Manabí, Ecuador, Rep. 2023.

[24] S. Schweizer Lassaga, “Muestreo y análisis de suelos para diagnóstico de fertilidad,” 1a ed. Reading, MA: M. Mesén Villalobos and L. Ramírez Cartín, 2011. https://www.mag.go.cr/bibliotecavirtual/P33-9965.pdf

[25] Eijkelkamp, “EC-pH meters”, 2024. www.eijkelkamp.com.

[26] S. Barrezueta Undas, A. Cervantes Alava, M. Ullauri Espinoza, J. Barrera Leon, and A. Condoy Gorotiza, “Evaluación del método de ignición para determinar materia orgánica en suelos de la provincia el Oro-Ecuador”, FAVE Sección Ciencias Agrarias, vol. 19, no. 2, pp. 25-36, 2020. https://doi.org/10.14409/fa.v19i2.9747

[27] L. M. Dos Santos-Tonial, M. Schimit Colla, J. Bassetto Carra, M. Fabris and V. Aparecido de Lima, “Classification and total carbon determination of the soils using RGB digital images combined with machine learning”, Communications in Soil Science and Plant Analysis, vol. 54, no. 2, pp. 1-13, 2023. https://doi.org/10.1080/00103624.2022.2110891

[28] R. Shrestha Prasad, S. Qasim and S. Bachri, “Investigating remote sensing properties for soil salinty mapping: A case study in Korat province of Thailand,” Environmental Challenges, vol. 5, pp. 1-10, 2021. https://doi.org/10.1016/j.envc.2021.100290

[29] Y. K. Sonn et al., “Development of models to estimate total soil carbon across different croplands at a regional scale using RGB photography”, International Journal of Environmental Research and Public Health, vol. 19, no. 15, pp. 2-11, 2022. https://doi.org/10.3390/ijerph19159344

[30] V. Kumar, B. Kumar Vimal, R. Kumar, M. Kumar and K. Vigyan Kendra, Determination of soil pH by using digital image processing technique. Journal of Applied and Natural Science, vol. 6, no. 1, pp. 14-18, 2014. https://doi.org/10.31018/jans.v6i1.368

[31] S. Yeon Kyu et al., Development of Models to Estimate Total Soil Carbon across Different Croplands at a Regional Scale Using RGB Photography. International Journal of Environmental Research and Public Health, vol. 19, no. 15, pp. 2-11, 2022. https://doi.org/10.3390/ijerph19159344

[32] M. F. Ikhwan, W. Mansor, Z. I. Khan, M. K. A. Mahmood, A. Bujang, and K. Haddadi, “Pearson Correlation and Multiple Correlation Analyses of the Animal Fat S Parameter”, TEM Journal, vol. 13 no. 1, pp. 155-160, 2024, https://doi.org/10.18421/TEM131-15

[33] C. Omuto, R. Vargas, K. Viatkin and Y. Yigini, “Mapeo de suelos afectados por salinidad”, Modelo espacial de suelos afectados por salinidad, 2021, http://www.wipo.int/amc/en/mediation/rules

[34] D. Ibarra Castillo, J. A. Ruiz Corral, D. R. González Eguiarte, J. G. Flores Garnica and G. Díaz Padilla, “Distribución espacial del pH de los suelos agrícolas de Zapopan, Jalisco, México”, Agricultura Técnica En México, vol. 35, no. 3, pp. 267-276, 2009.

[35] N. C. Arzola Pina and J. Machado de Armas,”Soil aptitude for the production of sugarcane. Part I. Calibration in experimental and production conditions,” Centro Agricola, vol. 42, no. 2, pp. 33-38, 2015. http://cagricola.uclv.edu.cu/descargas/pdf/V42-Numero_2/cag05215.pdf

[36] G. Mesías Ruiz, J. Peña, A. Castro, I. Borra Serrano and J. Dorado, “Detección y clasificación de malas hierbas mediante drones y redes neuronales profundas: creación de mapas para tratamiento localizado Weed detection and classification using UAVs and deep neural networks: mapping for localized treatment,” Revista de Ciencias Agrarias, vol. 47, no. 1, pp. 175-179, 2024,https://doi.org/10.19084/rca.34973

[37] L. Biró, V. Kozma-Bognár and J. Berke, “Comparison of RGB Indices used for Vegetation Studies based on Structured Similarity Index (SSIM),” Journal of Plant Science and Phytopathology, vol. 8, no. 1, pp. 007-012, 2024, https://doi.org/10.29328/journal.jpsp.1001124

[38] A. Dwi Priyo, R. Isnain Rachmanto, Mujiyo and Komariah, “The accuracy of soil moisture prediction using an RGB camera on maize and peanut plantation”, E3S Web of Conferences, pp. 1-6, 2023. https://doi.org/10.1051/e3sconf/202346701031

[39] F. J. Diaz, A. Ahmad, L. Parra, S. Sendra and J. Lloret, “Low-Cost Optical Sensors for Soil Composition Monitoring”, Sensors, vol. 24, no. 4, pp. 1-20, 2024. https://doi.org/10.3390/s24041140

Downloads

Published

2024-10-01

How to Cite

Alava, M., García Solórzano, A. J., Pacheco Gil, H. A., & Delgado Marcillo, C. M. (2024). Model for Estimating Soil Chemical Properties with RGB Drone Images. Enfoque UTE, 15(4), 19–26. https://doi.org/10.29019/enfoqueute.1078

Issue

Section

Miscellaneous