This is an outdated version published on 2019-03-29. Read the most recent version.

Sliding Mode Control Based on Internal Model for a Non-minimum phase Buck and Boost Converter

DOI:

https://doi.org/10.29019/enfoqueute.v10n1.442

Keywords:

Buck-Boost; non-minimum phase system; internal model control; sliding mode control; chattering.

Abstract

This work presents the application of different schemes to control a non-minimum phase Buck-Boost converter. Three control schemes are used. The first controller presented is a PI controller, the second one is Sliding Mode Control and the third one is a combination of two control schemes, Internal Model Control and Sliding Mode Control. The controllers are designed from a Right-Half Plane Zero (RHPZ) reduced order model. The RHPZ model is converted, using Taylor approximation, in a First Order Plus Dead Time (FOPDT) model and after that, the controllers are obtained. The performance of the SMC-IMC is compared against to a PI controller and a SMC. The simulation results show that SMC-IMC improves the converter response, reducing the chattering and presenting better robustness for load changes

Downloads

Download data is not yet available.

References

Al-Hadithi B.M., Barragan A.J., Andujar J.M. and Jimenez A. (2016). Chattering-free variable control structure for multivariable nonlinear systems. Elsevier Science Publisher B.V, vol 39, Netherlands, 165-187.
Camacho O. and de La Cruz F. (2014). Controlador de Modos Deslizantes basado en Predictor de Smith y Modelo de Segundo Orden para Procesos con Elevado Retardo. Revista Politécnica 35 (2), 18-24.
Camacho O., Rojas R., and García W. (1999). Variable Structure Control applied to chemical processes with inverse response. ISA Transactions, 56-63.
Camacho O., Smith C. and Moreno W. (2003). Development of an internal model sliding mode controller. Industrial & Engineering Chemistry Research 42, 568–573.
Dominguez X., Camacho O., Leica P. and Rosales A. (2016). A Fixed-Frequency Sliding-mode Control in a Cascade Scheme for the Half-Bridge Bidirectional DC-DC Converter. 2016. IEEE Ecuador Technical Chapters Meeting (ETCM). DOI: 10.1109/ETCM.2016.7750835
Forouzesh M., Siwakoti Y. P., Gorji S. A., Blaabjerg F. and Lehman B. (2017) Step-Up DC–DC Converters: A Comprehensive Review of Voltage Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics 32(12):9143-9178.
Huang J., and Liu S. (2016). Analysis of Non-minimum Phase in Buck-Boost Converter. MATEC Web of conferences 55, ACPPE 2016, 1-6.
Rozanov Y., Ryvkin S., Chavligin E. and Voronin P. (2016). Powers Electronics Basics. New York, EE.UU.: Editorial CR Press, Taylor & Francis Group. p 241 -264.
Smith C. and Corripio A. (1997). Principles and Practice of Automatic Process Control. Second Edition. New York, EE.UU.: Editorial Limusa Wiley. p 314-315.
Tahri F., Tahri A. and Flazi S. (2014). Sliding mode Control for DC-DC Buck Converter. Third International Conference on Power Electronics and Electrical Drives ICPEED'14, Algeria, 1-5.
Tarakanath K., Pathwardan S. and Agarwal V. (2014). Internal Model Control of dc-dc Boost Converter Exhibit Non-Minimum Phase Behavior. IEEE PEDES 2014, 1-8.

Downloads

Published

2019-03-29

Versions

How to Cite

Sliding Mode Control Based on Internal Model for a Non-minimum phase Buck and Boost Converter. (2019). Enfoque UTE, 10(1), pp. 41 – 53. https://doi.org/10.29019/enfoqueute.v10n1.442

Issue

Section

Automation and Control, Mechatronics, Electromechanics, Automotive