Mechatronic device for the analysis and mitigation of involuntary movements in people with Parkinson's disease
DOI:
https://doi.org/10.29019/enfoqueute.v10n1.452Keywords:
Parkinson disease; electromyographical signals; artificial Intelligence; exoskeletonAbstract
Considering that the Parkinson disease is a neurodegenerative, progressive and incurable pathology, and with the purpose of improving ill people life quality, the design and construction of a mechatronic device was proposed to help mitigating the involuntary movements produced by the disease. This device allows the analysis of the involuntary movements of pronosupination generated in the upper limbs using electromyographic signals produced by the muscles of the forearm and an algorithm based on artificial neural networks. To materialize the device, fast prototyping like 3D printing and the V model-based mechatronics methodology were considered. As a result of this investigation, a mechatronics device in the shape of an exoskeleton controlled by an embedded system which analyses, processes electromyographic signals and using neural networks allows tremor and involuntary movements classification produced by each patient. The system operation results are: for tremor prediction is 96.88% of success, and for the involuntary movement prediction is 100 % of success.
Downloads
References
Bonilla, V., Lukyanov , E. A., Litvin, A. V., & Deplov, D. A. (2015). Identification of the elbow motion kinematic parameters by means of artificial neural networks technology. Vestnik of Don State Technical University, 15(1), 39-47. doi:https://vestnik.donstu.ru/jour/article/view/228
Bonilla, V., Mosquera, G., Mideros, D., & Litvin, A. (2017). Definición de los parámetros del movimiento del codo mediante el análisis de las señales electromiográficas superficiales del bíceps. Quito: INCISCOS 2017.
Bonilla, V., Moya, M., Evgeny, A. V., Lukyanov, A., & Marín, L. (2018). Modeling and simulation of the Mitsubishi RV-2JA Robot controlled by electromyographic signals (Vol. 9). Quito: Enfoque UTE.
Cudeiro Mazaira, F. J. (2015). Reeducación Funcional en la enfermedad de Parkinson. Barcelona, España: Elsevier.
Estrada Bellman, I., & Martínez Rodríguez, H. R. (Septiembre-Diciembre de 2011). Diagnóstico y tratamiento de la enfermedad de Parkinson. Avances, 8, 16-22.
Francescon, P., Kilby, W., Noll, J., Masi, L., & Sata, N. (2017). Monte Carlo simulated corrections for beam commissioning measurements with circular and MLC shaped fields on the CyberKnife M6 System: a study including diode, microchamber, point scintillator, and synthetic microdiamond detectors, (Vol. 62). Physics in Medicine & Biology.
Friedenthal, S., Moore, A., & Steiner, R. (2012). A Practical Guide to SysML The Systems Modeling Language (2nd ed.). Waltham, Massachusetts, United States : Elsevier.
Gilmore, G., & Jog, M. (2017). Future Perspectives: Assessment Tools and Rehabilitation in the New Age. (H. Chien, & O. Barsottini, Edits.) Movement Disorders Rehabilitation: Springer.
Jankovic, J., & Tolosa, E. (2007). Enfermedad de Parkinson y trastornos del movimiento (5ta Edición ed.). Philadelphia, Pennsylvania, United States: Lippincott Williams & Wilkins.
Linazasoro Cristóbal, G., López del Val, L. J., López García, E., Martínez Martínez, L., & Santos Lasaosa, S. (2012). Parkinson y Discinecias. Madrid, España: Editorial médica panamericana.
López del Val , L. J., & Linazasoro, G. (2012). Párquinson y Discinecias: Abordaje diagnóstico y terapéutico. Madrid, España: Panamericana.
Montoya, M., Muñoz , J., & Henao, O. (2015). Surface EMG based muscle fatigue detection using a low-cost wearable sensor and amplitude-frequency analysis. Actas de Ingeniería, 1, 29-33.
Phinyomark, A., Sirinee , T., Huosheng, H., Pornchai , P., & Limsakul, C. (2012). The Usefulness of Mean and Median Frequencies in Electromyography Analysis. (G. R. Naik, Ed.) doi:http://dx.doi.org/10.5772/50639
Ponce Cruz, P. (2010). Inteligencia Artificial con aplicaciones a la ingeniería (1era Edición ed.). México: Alfaomega.
Rivera, G., & Bonilla, V. (2018). Diseño y construcción de un exo-esqueleto para la mitigación de temblores involuntarios de pronosupinación en personas con parkinson. Universidad Tecnológica Equinoccial, Quito, Ecuador.
Rivera, G., Bonilla, V., & Moya, M. (2019). Exoskeleton prototype to mitigate pronosupination tremors in people with Parkinson's disease. 2018 International Conference on Information Systems and Computer Science (INCISCOS), 16-22. doi: http://doi.ieeecomputersociety.org/10.1109/INCISCOS.2018.00010
Rocon E, G. J.-L. (10 de Octubre de 2012). Biomechanical Loading as an Alternative Treatment for Tremor: A Review of Two Approaches. Tremor and Other Hyperkinet Movements. Obtenido de http://tremorjournal.org/article/view/77
Rocon, E., Ruíz, A. F., Belda-Lois, J. M., Moreno, J. C., Pons, J. L., Raya, R., & Ceres, R. (Abril de 2008). Diseño, Desarrollo y Validación de Dispositivo Robótico para Supresión del Temblor Patológico. Revista Iberoamericana de Automática e Informática, 5(2).
Roland, V. (octubre de 2015). MyoBridge. Obtenido de Github: https://github.com/vroland/MyoBridge/wiki
Romo, H. A., Realpe, J. C., & Jojoa, P. E. (2007). Análisis de Señales EMG Superficiales y su Aplicación en Prótesis de Mano. Avances en Sistemas e Informática, 4(1), 127-136.
Roncon, E., & Pons, J. (2011). Exoeskeletons in Rehabilitation Robotics: Tremor Suppression (Vol. 69). Berlin, Alemania: Springer.
Shah, V. V., Goyal, S., & Palanthandalam-Maadapusi, H. J. (2017). A Possible Explanation of How High-Frequency Deep Brain Stimulation. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, vol. 25, pp. 2498-2508.
Tepavac, D., & Schwirtlich, L. (Marzo de 1997). Detection and prediction of FES-induced fatigue. Journal of Electromyography and Kinesiology, 7, 39-50.
Thalmic-Labs. (16 de 01 de 2017). Obtenido de MYO Web site: https://www.myo.com/
Tomaszewski, M. (2015). Obtenido de GitHub Inc.: http://www.mathworks.com/matlabcentral/fileexchange/55817-myo-sdk-matlab-mex-wrapper
VDI-RICHTLINIEN. (Junio de 2004). Design methodology for Mechatronic Systems. 118.
Yang, Y., Bei-sha , T., & Ji-feng , G. (2016). Parkinson’s Disease and Cognitive Impairment. Hindawi Publishing Corporation, 1-8. Obtenido de http://dx.doi.org/10.1155/2016/6734678
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.