Anaerobic horizontal flow reactor with polyethylene terephthalate as support material
DOI:
https://doi.org/10.29019/enfoqueute.v7n2.98Keywords:
anaerobic digestion, horizontal flow reactor, biofilm, wastewater, dairy industryAbstract
A pilot anaerobic reactor was installed to remove the organic load of wastewater from dairy industry. It uses a bacterial inoculum previously acclimated to the substrate. It was disposed horizontally and filled with pieces of polyethylene terephthalate (PET), from plastic bottles. The reactor was operated at room temperature, during 100 days, in three phases: 1) the reactor was stabilized with volumetric organic load from 0.013 to 0.500 kg/day.m³; 2) the hydraulic retention time was of 1 day and the volumetric organic load of 3 kg/day.m³; 3) the volumetric organic load was incremented from 4 to 6.6 kg/day.m³ and the hydraulic retention time was 1 day. Organic material removal efficiencies was of 85%, and approximately 75% were obtained in the second and third phase, respectively. The Y value was 0.15, indicating that 0.15 kg of biomass were generated by kg of QDO supplied to the reactor. Finally, the biomass generated inside the reactor was analyzed, obtaining a value of 18868 mg/L, which is a higher value than those of conventional systems.
Downloads
References
Arango O., Sanches, L. (2009). Tratamiento de aguas residuales de la industria láctea en sistemas anaerobios tipo UASB. Facultad de Ciencias Agropecuarias (9) 2, 24-31.
Arango A., Garcés, F. (2007). Tratamiento de aguas residuales de la industria láctea. Producción más limpia, (2) 2, 23-30.
Campos, R. G., Parra, R. A. (2015). Evaluación del comportamiento de un reactor UASB con diferentes cargas orgánicas provenientes de lactosuero. Producción + Limpia, 9(1), 23-30.
Demirel, B., Yenigun, O., Onay, T. T. (2005). Anaerobic treatment of dairy wastewaters: a review. Process Biochemistry, 40(8), 2583-2595. doi:10.1016/j.procbio.2004.12.015
Ince, O. (1998). Potential energy production from anaerobic digestion of dairy wastewater. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering. (33) 6, 1219-1228. doi:10.1080/10934529809376784
Karadag, D., Köroğlu, O. E., Ozkaya, B., Cakmakci, M. (2015). A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochemistry, 50(2), 262-271. doi:10.1016/j.procbio.2014.11.005
Kolhe, A. S., Ingale, S. R., Bhole, R. V. (2009). Effluent of dairy technology. Shodh Samiksha aur Mulyankan (International Research Journal), 2, 459-461.
Kushwaha, J. P., Srivastava, V. C., Mall, I. D. (2011). An overview of various technologies for the treatment of dairy wastewaters. Critical reviews in food science and nutrition, 51(5), 442-452. DOI:10.1080/10408391003663879
López, P., Harnisth, A. (2016). Electrocoagulación de aguas residuales de la industria láctea. Enfoque UTE, 7(1), 13-21.
Prócel, D., Posligua, P., Banchón, C. (2016). Biodegradación de contaminantes orgánicos de la industria láctea. Enfoque UTE, 7(1), 22-32.
Rodríguez, J., Pérez, D., de la Garza, J. A. R., Garza, Y. (2005). Evaluación cinética de las aguas residuales de la industria láctea en sistemas batch y un reactor UASB. XI Congreso de Biotecnología y Bioingeniería Sociedad Mexicana de Biotecnología y Bioingeniería, Yucatán, México.
Solano J., Rangel, M. (2006). Evaluación operacional de un sistema a escala laboratorio de biopelícula anaerobia soportada para el tratamiento de aguas residuales domésticas (tesis de pregrado). Universidad Industrial de Santander, Bucaramanga, Colombia.
Tawfik, A., Sobhey, M., Badawy, M. (2008). Treatment of a combined dairy and domestic wastewater in an up-flow anaerobic sludge blanke (UASB) reactor followed by activated sludge (AS system). Desalination, (227) 1, 167-177. doi:10.1016/j.desal.2007.06.023
Tikariha, A., & Sahu, O. (2014). Study of characteristics and treatments of dairy industry waste water. Journal of applied & environmental microbiology,2(1), 16-22. DOI:10.12691/jaem-2-1-4
Torres-Sanchez, A. L., Lopez-Cervera, S. J., de la Rosa, C., Maldonado-Vega, M., Maldonado-Santoyo, M., Peralta-Hernandez, J. M. (2014). Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry wastewater. International Journal of Electrochemical Science, 9, 6103-6112.
Wang, S., Chandrasekhara Rao, N., Qiu, R. Moletta, R. (2009). Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Bioresource Technology, (100) 23, 5641-5647. doi:10.1016/j.biortech.2009.06.028
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.