Intensity-Duration-Frequency Curves for Manicaragua city, Cuba

Authors

DOI:

https://doi.org/10.29019/enfoqueute.1046

Keywords:

partial duration series, rainfall intensity, threshold, curves, precipitation

Abstract

The Intensity-Duration-Frequency (IDF) curves are a way to visualize and represent extreme hydrometeorological rainfall events. In this article, an analysis of convective rainfall events recorded at the La Piedra Meteorological Station, Villa Clara, Cuba, was conducted. To develop IDF curves, the 2006- 2019 time series was analyzed. A partial duration series was generated, including intervals from 20 minutes to 4320 minutes, subjected to an outlier detection process. The series was divided into two categories: one for durations ≤ 720 minutes and another for durations > 720 minutes. The resulting series underwent nonparametric tests to assess their independence, randomness, homogeneity, and seasonality. Subsequently, they were fitted to the Generalized Pareto probability distribution and to a parametric equation of the Montana model, and then the curves were plotted for return periods of 10, 50 and 100. The Montana model led to obtaining correlation coefficients greater than 0.90 compared to the other methods used, significantly improving the quality of the fit in both categories. This research provides information to understand and plan the management of intense climatic phenomena and adequate risk management in an area where such studies are lacking, facilitating access to crucial data essential in the design and execution of hydraulic engineering projects in the region.

Metrics

Downloads

Download data is not yet available.

References

R. Balbastre Soldevila, Análisis comparativo de metodologías de cálculo de tormentas de diseño para su aplicación en hidrología urbana. [Tesis de Maestría, Universitat Politècnica de València], 2018. Available: http://hdl.handle.net/10251/100090

P. L. Martínez Rodas, Curvas de Intensidad-Duración-Frecuencia para la ciudad de Cuenca. [Magíster en Hirosanitaria, Universidad del Azuay], 2023. Available: http://dspace.uazuay.edu.ec/handle/datos/12941

A. G. Yilmaz, H. Safaet, F. Huang and B. J. C. Perera, “Time-varying character of storm intensity frequency and duration curves,” Australasian Journal of Water Resources, vol. 18, no. 1, 15-26, 2014, https://doi.org/10.7158/W12-017.2014.18.1

V. Agilan, and N. V. Umamahesh, “What are the best covariates for developing non-stationary rainfall Intensity-Duration-Frequency relationship?,” Advances in Water Resources, vol. 101, 11-22, 2017c. https://doi.org/10.1016/j.advwatres.2016.12.016

M. Noor, T. Ismail, E.-S. Chung, S. Shahid and J. H. Sung, “Uncertainty in Rainfall Intensity Duration Frequency Curves of Peninsular Malaysia under Changing Climate Scenarios,” Water, vol. 10, no. 12, 2018, https://doi.org/https://doi.org/10.3390/w10121750

V. Agilan and N. V. Umamahesh, “Non-Stationary Rainfall Intensity- Duration-Frequency Relationship: a Comparison between Annual Maximum and Partial Duration Series,” Water Resources Management, vol. 3, no. 6, 1825-1841, 2017b, https://doi.org/10.1007/s11269-017-1614-9

D. F. Campos-Aranda, “Ajuste con momentos L de las distribuciones GVE, LOG y PAG no estacionarias en su parámetro de ubicación, aplicado a datos hidrológicos extremos,” Agrociencia, vol. 52, no. 2, 169-189, 2018. Available: https://www.scielo.org.mx/scielo. php?pid=S1405-31952018000200169&script=sci_arttext

S. Emmanouil, A. Langousis, E. I. Nikolopoulos and E. N. Anagnostou, 2020. Quantitative assessment of annual maxima, peaks-overthreshold and multifractal parametric approaches in estimating intensity- duration-frequency curves from short rainfall records. Journal of Hydrology, vol. 589, 125151, https://doi.org/https://doi.org/10.1016/j. jhydrol.2020.125151

P. Coelho Filho, J. Alexandre, D. C. de Rezende Melo and M. de Lourdes Martins Araújo, Estudo de chuvas intensas para a cidade de Goiânia/GO por meio da modelação de eventos máximos anuais pela aplicação das distribuições de Gumbel e Generalizada de Valores Extremos. Ambiência, vol. 13, no. 1, 2017. Available: https://core.ac.uk/ download/pdf/230459134.pdf

C. Montesinos, W. Lavado, N. Quijada, L. Gutierrez and O. Felipe, Desarrollo de curvas pluviométricas Intensidad-Duración-Frecuencia (IDF) en Perú. Servicio Nacional de Meteorología e Hidrología del Perú– SENAMHI, 2023. Available: https://repositorio.senamhi.gob.pe/handle/20.500.12542/2825

J. L. Ng, S. K. Tiang, Y. F. Huang, N. I. F. M. Noh and R. A. Al-Mansob, “Analysis of annual maximum and partial duration rainfall series,” IOP Conference Series: Earth and Environmental Science, vol. 646, no. 1, 012039, 2021, https://doi.org/10.1088/1755-1315/646/1/012039

S. Swetapadma and C. S. P. Ojha, “Chapter 9 - A comparison between partial duration series and annual maximum series modeling for flood frequency analysis,” in K. S. Kasiviswanathan, B. Soundharajan, S. Patidar, J. He and C. S. P. Ojha (eds.), Developments in Environmental Science, vol. 14, 173-192, Elsevier, 2023, https://doi.org/10.1016/B978-0-443-18640-0.00007-9

C. Leys, M. Delacre, Y. L. Mora, D. Lakens and C. Ley, “How to classify, detect, and manage univariate and multivariate outliers, with emphasis on pre-registration,” International Review of Social Psychology, vol. 32, no.1, 2019, https://doi.org/10.5334/irsp.289

W. Martín Rosales, A. Pulido Bosch, Á. Vallejos and M. López Chicano, “Precipitaciones máximas en el Campo de Dalias y vertiente meridional de la Sierra de Gador (Almería),” Geogaceta, vol. 20, no. 6, 1251-1254, 1996. Available: https://dialnet.unirioja.es/servlet/ articulo?codigo=8115318

G. Zucarelli, N. Piccoli, M. Pittau and M. Gallo, “Curvas intensidadduración- frecuencia en la Región Litoral de la República Argentina,” Cuadernos del CURIHAM, vol. 15, no. 0, 69-76, 2009, https://doi.org/10.35305/curiham.v15i0.71

A. G. Yilmaz, H. Safaet, F. Huang and B. J. C. Perera, “Time-varying character of storm intensity frequency and duration curves,” Australasian Journal of Water Resources, vol. 18, no. 1, 15-26, 2014, https://doi.org/10.7158/W12-017.2014.18.1

S. Vrban, Y. Wang, A. McBean Edward, A. Binns and B. Gharabaghi, Evaluation of stormwater infrastructure design storms developed using partial duration and annual maximum series models,” Journal of Hydrologic Engineering, vol. 23, no. 12, 04018051, 2018, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001712

N. Guru and R. Jha, “A Framework for the Selection of Threshold in Partial Duration Series Modeling,” In R. Jha, V. P. Singh, V. Singh, L. B. Roy and R. Thendiyath (eds.), Hydrological Modeling: Hydraulics, Water Resources and Coastal Engineering (pp. 69-84), 2022. Springer International Publishing. https://doi.org/10.1007/978-3-030-81358-1_7

W. Martín Rosales, A. Pulido Bosch, Á. Vallejos and M. López Chicano, “Precipitaciones máximas en el Campo de Dalias y vertiente meridional de la Sierra de Gador (Almería),” Geogaceta, vol. 20, no. 6, 1251-1254, 1996. Available: https://dialnet.unirioja.es/servlet/ articulo?codigo=8115318

P. Ganguli and P. Coulibaly, Assessment of future changes in intensityduration- frequency curves for Southern Ontario using North American (NA)-CORDEX models with nonstationary methods. Journal of Hydrology: Regional Studies, vol. 22, 100587, 2019, https://doi.org/10.1016/j.ejrh.2018.12.007

M. T Vu, V. S. Raghavan and S. Y. Liong, “Deriving short-duration rainfall IDF curves from a regional climate model,” Natural Hazards, vol. 85, no. 3, 1877-1891, 2017, https://doi.org/10.1007/s11069-016- 2670-9

J. Li, J. Evans, F. Johnson and A. Sharma, “A comparison of methods for estimating climate change impact on design rainfall using a highresolution RCM,” Journal of Hydrology, vol. 547, 413-427, 2017, https://doi.org/10.1016/j.jhydrol.2017.02.019

M. Noor, T. Ismail, E.-S. Chung, S. Shahid and J. H. Sung, “Uncertainty in Rainfall Intensity Duration Frequency Curves of Peninsular Malaysia under Changing Climate Scenarios,” Water, vol. 10, no. 12, 2018, https://doi.org/10.3390/w10121750

P. Claps and F. Laio, “Can continuous streamflow data support flood frequency analysis? An alternative to the partial duration series approach,” Water Resources Research, vol. 39, no. 8, 2003, https://doi.org/10.1029/2002WR001868

N. Guru and R. Jha, “A Framework for the Selection of Threshold in Partial Duration Series Modeling,” In R. Jha, V. P. Singh, V. Singh, L. B. Roy and R. Thendiyath (eds.), Hydrological Modeling: Hydraulics, Water Resources and Coastal Engineering (pp. 69-84), 2022. Springer International Publishing. https://doi.org/10.1007/978-3-030-81358-1_7

S. Emmanouil, A. Langousis, E. I. Nikolopoulos and E. N. Anagnostou, 2020. Quantitative assessment of annual maxima, peaks-overthreshold and multifractal parametric approaches in estimating intensity- duration-frequency curves from short rainfall records. Journal of Hydrology, vol. 589, 125151, https://doi.org/10.1016/j.jhydrol.2020.125151

V. Agilan and N. V. Umamahesh, “Non-Stationary Rainfall Intensity- Duration-Frequency Relationship: a Comparison between Annual Maximum and Partial Duration Series,” Water Resources Management, vol. 3, no. 6, 1825-1841, 2017b, https://doi.org/10.1007/s11269-017-1614-9

F. Karim, M., Hasan and S. Marvanek, “Evaluating Annual Maximum and Partial Duration Series for Estimating Frequency of Small Magnitude Floods,” Water, vol. 9, no. 7, 4812017, https://doi.org/10.3390/w9070481

J. L. Ng, S. K. Tiang, Y. F. Huang, N. I. F. M. Noh and R. A. Al-Mansob, “Analysis of annual maximum and partial duration rainfall series,” IOP Conference Series: Earth and Environmental Science, vol. 646, no. 1, 012039, 2021, https://doi.org/10.1088/1755-1315/646/1/012039

H. Wang, M. J. Bah and M. Hammad, 2019, Progress in Outlier Detection Techniques: A Survey. IEEE Access, 7, 107964-108000, https://doi.org/10.1109/ACCESS.2019.2932769

C. Leys, M. Delacre, Y. L. Mora, D. Lakens and C. Ley, “How to classify, detect, and manage univariate and multivariate outliers, with emphasis on pre-registration,” International Review of Social Psychology, vol. 32, no.1, 2019, http://doi.org/10.5334/ irsp.289

W. T. Hernández Guarín and P. X. Moreno Vivas, Regionalización de sequía hidrológica en la cuenca del río Bogotá a partir del método de l-momentos, 2017. Available: http://hdl.handle.net/11634/9266

A.,Gutiérrez-López and R. Barragán-Regalado, “Ajuste de curvas IDF a partir de tormentas de corta duración,” Tecnología y ciencias del agua, vol. 10, no. 6, 1-24. 2019. https://doi.org/10.24850/jtyca-2019-06-01

Y. Rodríguez López, N. Marrero de León and A. León Méndez, “Consideraciones practicas sobre las curvas IFD,” Ingeniería Hidráulica y Ambiental, vol. 30, no. 1, 2009. Available: https://link.gale.com/apps/doc/A304466968/IFME?u=anon~91a3f3a4&sid=googleScholar&xid=c12dbfc5

S. Barcia Sardiñas and O. González, “Determinación de la curva de intensidad-duración-frecuencia de Cienfuegos,” Revista Cubana De Meteorología, 19(1), 3-12, 2013. Available: http://rcm.insmet.cu/index.php/rcm/article/view/140

C. Castillo-García, I. Domínguez-Hurtado, Y. Martínez-González and D. Abreu-Franco, “Curvas de intensidad-duración-frecuencia para la ciudad de Santa Clara, Cuba,” Tecnología y Ciencias del Agua, vol. 15, no.1, 361-408, 2024, https://doi.org/10.24850/j-tyca-15-01-09

OMM, Guía de prácticas hidrológicas, Gestión de Recursos hídricos y aplicación de prácticas hidrológicas, 2011, Sexta edición ed., Vol. II. Available: https://library.wmo.int/doc_num.php?explnum_id=10038

M. Naghettini, Fundamentals of statistical hydrology. Springer, 2017. https://doi.org/10.1007/978-3-319-43561-9

S. F. A. Xavier Júnior, J. d. S. Jale, T. Stosic, C. A. C. d Santos and V. P. Singh, “Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil,” Revista Brasileira de Meteorología, vol. 35, 2020, https://doi.org/10.1590/0102-7786351013

R Maity. Statistical methods in hydrology and hydroclimatology. Springer Singapore, 2018, https://doi.org/10.1007/978-981-16-5517-3

Published

2024-06-26

How to Cite

López Ferraz, R. L., Castillo García, C. L. ., Domínguez Hurtado, I. ., Alejandro Solis, J. ., & González Rodríguez, L. . (2024). Intensity-Duration-Frequency Curves for Manicaragua city, Cuba. Enfoque UTE, 15(3), 49-58. https://doi.org/10.29019/enfoqueute.1046

Issue

Section

Miscellaneous