Experimental tests and numerical analysis of the structure of the alternative composite material for the repair of flight surfaces in aircraft





flight surface, compound, aircraft repair, aircraft


Nowadays, polymeric matrix composite materials are used in multiple applications. One of the important areas of application is in the aeronautical sector, due to the relatively low density of the combined materials; these compounds have good mechanical properties, comparable to metallic materials, but providing additional benefits. The objective of this work is to carry out the experimental tests and the numerical analysis of the structure of the alternative composite material to be used to repair of the flight surfaces of CIDFAE aircraft. A widely extended vacuum bagging process was used to obtain a more homogeneous compound, thus reducing defects in processing, better controlling the fiber fraction and the overall thickness of the compound. Specimens of epoxy resin reinforced with layers of flat fabric of three different fibers of: carbon, glass and aramid, in different orientations, were made, which were tested for traction, bending and impact to determine their mechanical properties. It has been shown that the results obtained by analytical methodology and the finite element method are approximate to the results obtained with destructive tests. The experimental results show that the tensile strength values are higher in epoxy resin materials reinforced with 4 layers of carbon fiber in orientation 0 ° -90 °.



Download data is not yet available.


Altenbach, H., Altenbach, J., & Kissing, W. (2018). Mechanics of Composite Structural Elements. Springer. https://doi.org/10.1007/978-981-10-8935-0

Arockiam, N. J., Jawaid, M., & Saba, N. (2018). 6. Sustainable Bio Composites for Aircraft Components. In M. Jawaid & M. Thariq (Eds.), Sustainable Composites for Aerospace Applications (109–123). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102131-6.00006-2

ASTM D3039/D3039M. (2014). Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials D3039. ASTM Standards, 15, 1–13. https://www.astm.org/Standards/D3039

ASTM D5628-96. (1995). Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart (Tup or Falling Mass). ASTM Book of Standards, 08(October), 1–10. https://www.astm.org/Standards/D5628

ASTM D7264/D7264M-07. (2007). Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. Annual Book of ASTM Standards, i, 1–11. https://www.astm.org/Standards/D7264

Azarafza, R. (2018). Fabrication, Experimental Modal Testing, and A Numerical Analysis of Composite Sandwich Structures with a Grid-Stiffened Core. Mechanics of Composite Materials, 54(4), 537–544. https://doi.org/10.1007/s11029-018-9762-4

Bharath, D., Sandhya Rani, B., Saritha, V., Irshad Khan, P., & Kumar Chokka, S. (in press). Tensile and Erosion Behaviour of Medium Calcined Alumina Microparticles on GFRP Composites Fabricated with Vacuum Bagging Process. MaterialsToday: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.08.166

Boyina, G. R. T., Rayavarapu, V. K., & Subba Rao, V. V. (2017). Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model. Applied Composite Materials, 24(1), 235–250. https://doi.org/10.1007/s10443-016-9524-1

Chawla, K. K. (2019). Composite Materials. Springer. https://doi.org/10.1007/978-3-030-28983-6

Huang, W., Xie, L., Li, C., Jia, D., Chai, B., Mu, Y., Hou, C., & Dai, W. (2020). Ananalytical and Experimental Study of T-Shaped Composite Stiffened Panels: Effect of 90° Plies in Stringers on Curing and Buckling Performance. Applied Composite Materials, 27(5), 597–618. https://doi.org/10.1007/s10443-020-09816-4

Itou, H., Kimura, M., Chalupecký, V., Ohtsuka, K., Tagami, D., & Takada, A. (Eds.). (2017). Mathematical Analysis of Continuum Mechanics and Industrial Applications (Vol. 26). Springer. https://doi.org/10.1007/978-981-10-2633-1

Jiang, H., Ren, Y., & Liu, Z. (2019). Thin-Walled Structures Numerical Prediction for Effects of Fiber Orientation on Perforation Resistance Behaviors of Patch-repaired Composite Panel Subjected to Projectile Impact. Thin Walled Structures, 144(May), 106325. https://doi.org/10.1016/j.tws.2019.106325

Kar, K. K. (Ed.). (2017). Composite Materials. Springer. https://doi.org/10.1007/978-3-662-49514-8

Khirul, M., Muda, H., & Mustapha, F. (2018). 9. Composite Patch Repair Using Natural Fiber for Aerospace Applications, Sustainable Composites for Aerospace Applications. In M. Jawaid & M. Thariq (Eds.), Sustainable Composites for Aerospace Applications (171–209). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102131-6.00009-8

Krishnadasan, C. K., Shanmugam, N. S., Sivasubramonian, B., Nageswara Rao, B., & Suresh, R. (2021). Analytical Studies and Numerical Predictions of Stresses in Shear Joints of Layered Composite Panels for Aerospace Applications. Composite Structures, 255, 112927. https://doi.org/https://doi.org/10.1016/j.compstruct.2020.112927

Kumar Das, S., & Roy, S. (2018, March 22–24). Finite Element Analysis of Aircraft Wing Using Carbon Fiber Reinforced Polymer and Glass Fiber Reinforced Polymer [Paper]. IOP Conference Series: Materials Science and Engineering, Volume 402, 2nd International Conference on Advances in Mechanical Engineering (ICAME), Kattankulathur, India. https://doi.org/10.1088/1757-899X/402/1/012077

León, C., & Vásquez, A. (2010). Diseño y construcción de un soporte de ametralladora para el helicóptero del Ejército ecuatoriano, MI-171, utilizando materiales compuestos laminados [Tesis de grado, Universidad de las Fuerzas Armadas ESPE]. Repositorio de la Universidad de las Fuerzas Armadas ESPE, http://repositorio.espe.edu.ec/handle/21000/2342

Levy, A., & Hubert, P. (2019). Vacuum-bagged Composite Laminate Forming Processes: Predicting Thickness Deviation in Complex Shapes. Composites Part A, 126(August), 105568. https://doi.org/10.1016/j.compositesa.2019.105568

Liu, X., He, Y., Qiu, D., & Yu, Z. (2019). Numerical Optimizing and Experimental Evaluation of Stepwise Rapid High-pressure Microwave Curing Carbon Fiber/epoxy Composite Repair Patch. Composite Structures, 111529. https://doi.org/10.1016/j.compstruct.2019.111529

Muralidhara, B., Babu, S. P. K., & Suresha, B. (2019). Materials Today: Proceedings Utilizing Vacuum Bagging Process to Prepare Carbon Fiber/epoxy Composites with Improved Mechanical Properties. MaterialsToday: Proceedings, 27(3), 2022–2028. https://doi.org/10.1016/j.matpr.2019.09.051

Pero-Sanz Elorz, J. A., Fernández González, D., & Verdeja, L. F. (2019). Structural Materials: Properties and Selection. Springer. https://doi.org/10.1007/978-3-030-26161-0

Picu, C., & Ganghoffer, J.-F. (Eds.). (2020). Mechanics of Fibrous Materials and Applications: Physical and Modelinf Aspects (Vol. 596). Springer. https://doi.org/10.1007/978-3-030-23846-9

Prasad, N. E., & Wanhill, R. J. H. (Eds.). (2017). Aerospace Materials and Material Technologies (Vol. 1: Aerospace Materials). Springer. https://doi.org/10.1007/978-981-10-2134-3

Siddiquee, S., Gan Jet Hong, M., & Mizanur Rahman, M. (Eds.). (2020). Composite Materials: Applications in Engineering, Biomedicine and Food Science. Springer. https://doi.org/10.1007/978-3-030-45489-0

Suzuki, Y., Cousins, D., Wassgren, J., Kappes, B. B., & Stebner, A. P. (2017). Kinetics and Temperature Evolution During The Bulk Polymerization of Methyl Methacrylate for Vacuum-Assisted Resin Transfer Molding. Composites Part A: Applied Science and Manufacturing, 104(January), 60–67. https://doi.org/10.1016/j.compositesa.2017.10.022

Vasiliev, V. V., Jones, R. M., & Man, L. I. (2017). Mechanics of Composite Structures. CRC Press. https://doi.org/10.1201/9780203747858

Verma, N., Kumar, R., Zafar, S., & Pathak, H. (2020). Vacuum-assisted Microwave Curing of Epoxy/carbon Fiber Composite: An Attempt for Defect Reduction in Processing. Manufacturing Letters, 24, 127–131. https://doi.org/10.1016/j.mfglet.2020.04.010

Wang, J., Baker, A., & Chang, P. (2019). Hybrid Approaches for Aircraft Primary Structure Repairs. Composite Structures, 207(January), 190–203. https://doi.org/10.1016/j.compstruct.2018.09.038

Zhu, G., Wang, S., Cheng, W., Ren, Y., & Wen, D. (2020). Corrosion and Wear Performance of Aircraft Skin After Laser Cleaning. Optics and Laser Technology, 132(July), 106475. https://doi.org/10.1016/j.optlastec.2020.106475

Zimmermann, N., & Wang, P. H. (2020). A Review of Failure Modes and Fracture Analysis of Aircraft Composite Materials. Engineering Failure Analysis, 115(September), 104692. https://doi.org/10.1016/j.engfailanal.2020.104692



How to Cite

Arroba Arroba, C., Telenchana Flores, M., Paredes Salinas , J., Fiallo Ortega, S., & Vaca Ortega, H. (2021). Experimental tests and numerical analysis of the structure of the alternative composite material for the repair of flight surfaces in aircraft. Enfoque UTE, 12(2), pp. 37 - 51. https://doi.org/10.29019/enfoqueute.723