Indoors positioning with Android, Bluetooth and RSSI
DOI:
https://doi.org/10.29019/enfoqueute.v9n1.238Keywords:
IPS, Bluetooth, RSSI, indoors positioningAbstract
This research has two main objectives. First, to determine experimentally the relationship between RSSI and distance. Second, with trilateration techniques, to establish the location of the receiver device in the experimental environment. The main contributions are: to determine how Bluetooth devices interact between them and how they differ when dealing with RSSI measures; to collect data over controlled distances applying to it regression analysis to establish the RSSI – distance relationship; to evaluate the basic trilateration techniques to produce a functional prototype for an indoor positioning system using Android devices. Results are encouraging considering that even with an extremely heterogeneous hardware and software configuration, it was possible to get a high average precision.
Downloads
References
Alvear-Puertas, V., Rosero-Montalvo, P., Peluffo-Ordóñez, D., & Pijal-Rojas, J. (2017). Internet de las Cosas y Visión Artificial, Funcionamiento y Aplicaciones: Revisión de Literatura. Enfoque UTE, 8(1), 244–256. https://doi.org/10.29019/enfoqueute.v8n1.121
An, K., Xie, S., & Ouyang, Y. (2017). Reliable Sensor Location for Object Positioning and Surveillance via Trilateration. Transportation Research Procedia, 23, 228–245.
Asadullah, M., & Ullah, K. (2017). Smart home automation system using Bluetooth technology. En Innovations in Electrical Engineering and Computational Technologies (ICIEECT), 2017 International Conference on (pp. 1–6). IEEE.
Cabrera-Goyes, E., & Ordóñez-Camacho, D. (2017). Hacia un Sistema Bluetooth de Ubicación en Interiores con Dispositivos Estándar Android. En International Conference on Information Systems and Computer Science. IEEE Xplore (Por publicarse).
Chowdhury, T., Rahman, M., Parvez, S.-A., Alam, A., Basher, A., Alam, A., & Rizwan, S. (2015). A multi-step approach for RSSI-based distance estimation using smartphones. En Networking Systems and Security (NSysS), 2015 International Conference on (pp. 1–5). IEEE.
Cinefra, N. (2014). An adaptive indoor positioning system based on Bluetooth Low Energy RSSI. Politecnico de Milano. Recuperado a partir de https://www.politesi.polimi.it/handle/10589/92284
Dahlgren, E., & Mahmood, H. (2014). Evaluation of indoor positioning based on Bluetooth Smart technology. Chalmers University of Technology, Göteborg, Sweden.
Feldmann, S., Kyamakya, K., Zapater, A., & Lue, Z. (2003). An Indoor
Bluetooth-Based Positioning System: Concept, Implementation and Experimental Evaluation. En International Conference on Wireless Networks (Vol. 272).
Krukowski, A., & Arsenijevic, D. (2010). RFID-based positioning for building management systems. En Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 3569–3572). https://doi.org/10.1109/ISCAS.2010.5537800
Larranaga, J., Muguira, L., Lopez-Garde, J. M., & Vazquez, J. I. (2010). An environment adaptive ZigBee-based indoor positioning algorithm. En 2010 International Conference on Indoor Positioning and Indoor Navigation (pp. 1–8). https://doi.org/10.1109/IPIN.2010.5647828
Lu, M., Chen, W., Shen, X., Lam, H.-C., & Liu, J. (2007). Positioning and tracking construction vehicles in highly dense urban areas and building construction sites. Automation in Construction, 16(5), 647–656. https://doi.org/10.1016/j.autcon.2006.11.001
Mainetti, L., Patrono, L., & Sergi, I. (2014). A survey on indoor positioning systems. En Software, Telecommunications and Computer Networks (SoftCOM), 2014 22nd International Conference on (pp. 111–120). IEEE.
Moser, V., Barišić, I., Rajle, D., & Dimter, S. (2016). Comparison of different survey methods data accuracy for road design and construction. En Proceedings of the International Conference on Road and Rail Infrastructure CETRA.
Quiñones-Cuenca, M., González-Jaramillo, V., Torres, R., & Jumbo, M. (2017). Sistema De Monitoreo de Variables Medioambientales Usando Una Red de Sensores Inalámbricos y Plataformas De Internet De Las Cosas. Enfoque UTE, 8(1), 329–343. https://doi.org/10.29019/enfoqueute.v8n1.139
Rojas, J. P., Bustos, J. C., & Ordóñez-Camacho, D. (2017). Transporte público inteligente al alcance de sus manos. Enfoque UTE, 8(1), 122–134. https://doi.org/10.29019/enfoqueute.v8n1.143
Rusli, M. E., Ali, M., Jamil, N., & Din, M. M. (2016). An Improved Indoor Positioning Algorithm Based on RSSI-Trilateration Technique for Internet of Things (IOT). En Computer and Communication Engineering (ICCCE), 2016 International Conference on (pp. 72–77). IEEE.
Suárez, A., Santana, J. A., Macias-Lopez, E. M., Mena, V. E., Canino, J. M., & Marrero, D. (2014). RSSI prediction in WiFi considering realistic heterogeneous restrictions. Network Protocols and Algorithms, 6(4), 19–40.
Torstensson, D. (2016). Indoor Positioning System using Bluetooth Beacon Technology. Mälardalen University, Mälardalen, Sweden.
Tóth, Z., & Tamás, J. (2016). Miskolc IIS hybrid IPS: Dataset for hybrid indoor positioning. En Radioelektronika (RADIOELEKTRONIKA), 2016 26th International Conference (pp. 408–412). IEEE.
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques (4 edition). Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo: Morgan Kaufmann.
Wu, R.-H., Lee, Y.-H., Tseng, H.-W., Jan, Y.-G., & Chuang, M.-H. (2008). Study of characteristics of RSSI signal. En Industrial Technology, 2008. ICIT 2008. IEEE International Conference on (pp. 1–3). IEEE.
Xiao, J., Zhou, Z., Yi, Y., & Ni, L. M. (2016). A Survey on Wireless Indoor Localization from the Device Perspective. ACM Comput. Surv., 49(2), 25:1–25:31. https://doi.org/10.1145/2933232
Zaidi, S., Assaf, A. E., Affes, S., & Kandil, N. (2016). Accurate Range-Free Localization in Multi-Hop Wireless Sensor Networks. IEEE Transactions on Communications, 64(9), 3886–3900. https://doi.org/10.1109/TCOMM.2016.2590436
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.