Analysis of the use of micro DC/DC converters focused on the maximum extraction of energy in photovoltaic farm
DOI:
https://doi.org/10.29019/enfoqueute.v10n1.441Keywords:
power generation control; solar panels; photovoltaic cells; maximum power point trackers; switching converters; DC/DC converters; energy managementAbstract
This work presents an extended study of the work published in the magazine INCISCOS 2018 titled “Improving of the Photovoltaic High Power Plant Generation Using DC/DC Micro Converters”, and intented to increase the amount of electrical energy generation of a Photovoltaic Plant located in Salinas, Imbabura Province, Ecuador through the implementation of DC/DC converters in the solar panel arrays and tracking techniques of the maximum power point. The results show that the insertion of the DC/DC converters in the system causes an increase in the amount of active power. The system is analiced in variation of solar radiation or changes in the ambient temperature as well.
Downloads
References
Ávila, E., Pozo, N., Pozo, M. y Salazar, G. (2018). Improved Particle Swarm Optimization Based MPPT for PV Systems under Partial Shading Conditions. Quito: Southern Power Electronics Conference (SPEC).
Benavides, D., Jurado, F. y González, L., (2018). Date analysis and tools applied to modeling and simulation of PV system in Ecuador. ENFOQUE UTE, 1-12.
Blaabjerg, F., Orlowska-Kowalska, T. y Rodríguez, J. (2014). Advanced and Intelligent Control in Power Electronics and Drivers. Nueva York: Springer.
Chen, P., y Yan, B. (2015). A Comparative Study on MPPT for Photovoltaic Generation Systems. IEEExplore, 1-6.
Cruz de Lima, N. (2012). Micro inversor para módulo fotovoltaico. Porto: Universidad do Porto.
Domínguez, X., Camacho, O., Leica, P., y Rosales, A. (2016). A Fixed-Frequency Sliding-mode Control in a Cascade Scheme for the Half-bridge Bidirectional DC-DC Converter”. IEEExplore.
Ji, Y.-H, Jung, D.-Y, Kim, J.-G, Kim, J.-H., Lee, T.-W. y Won, C.-Y. (2011). A Real Maximum Power Point Tracking Method for Mismatching Compensation in PV Array Under PArtially Shaded Conditions. IEEE TRANSACTIONS ON POWER ELECTRONICS, 1001-1009.
Liu, C.L, Liu, Y.-H, Luo, Y.-F, y Huang, J. W (2012). “A PSO-based MPPT Algorithm for Photovoltaic Systems Subject to Inhomogeneous Insolation”. IEEExplore, 721-726.
López, F. (2014). Construcción de funciones de Lyapunov para Sistemas Homogéneos de Segundo Orden (Método por reducción de variable). CDMX, México: Universidad Nacional Autónoma de México.
Vargas, J., Medina, J., Pozo, M., Pozo, N. y Salazar, G. (2018). Improving of the Photovoltaic High Power Plant Generation Using DC/DC Micro Converters. Quito: IEEE.
Vargas, J. (2018). “Diseño y Simulación de la Optimización en la Generación de Energía en una Central Fotovoltaica Mediante Conversores DC/DC y la Técnica de Control MPPT”, Quito: Escuela Politécnica Nacional.
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.