Calculation of Voltage Distribution along the Insulator Strings of a 500 kV Transmission Line Based on Finite Element Method

Authors

DOI:

https://doi.org/10.29019/enfoqueute.v11n3.619

Keywords:

High voltage suspension insulators; electric insulation; voltage distribution along the Insulator strings, FEMM, Finite Element Method

Abstract

This paper presents the voltage distributions along the insulator strings of a 500 kV overhead transmission line of Ecuador. The electrostatic problem related to the voltage distribution was solved using the Finite Element Method. A 1: 1 scale drawing is done on a CAD type drawing tool and then exported to the FEMM program that solves the problem and the results related to the voltages in the insulator string are obtained. The voltage differences in the different insulators that constitute a string are appreciated and the difference between the strings determined by the geometric location in the solution space is observed

Downloads

Download data is not yet available.

References

Akbari, E., Mirzaie, M., Rahimnejad, A., & Asadpoor, M. (2012). Finite Element Analysis of Disc Insulator Type and Corona Ring Effect on Electric Field Distribution over 230-kV Insulator Strings. International Journal of Engineering and Technology, 407-419.
Antonov, A. S., Glushkov, D. A., & Kropotuhin, S. Y. (2016). A set of models for investigation of voltage distribution along suspension insulator string. 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW) (págs. 519-524). St. Petersburg, Russia: IEEE.
ARCONEL. (2013). Plan Maestro de Electrificación 2013-2022. Quito-Ecuador: ARCONEL.
Arora, R., & Mosch, W. (2011). High voltage insulation engineering. Institute of Electrical and Electronics Engineers.
Ashouri, M., Mirzaie, M., & Gholami, A. (2010). Calculation of Voltage Distribution along Porcelain Suspension Insulators Based on Finite Element Method. Electric Power Components and Systems, 820-831.
Benguesmia, H., M'Ziou, N., & Boubakeur, A. (2018). Simulation of the Potential and Electric Field Distribution on High Voltage Insulator using the Finite Element Method. Diagnostyka, 19(2), 41-52.
Bessedik, S. (2015). Contournement des isolateurs pollués. Algeria: Ph.D. thesis in Sciences, Department of Electrical Engineering, University of Oran.
Chen, L., & Liang, X. (2012). Computational analysis on voltage distribution along ceramic insulator strings of uhv ac transmission line. Gaodianya Jishu/ High Voltage Engineering,, 376-381.
CONELEC. (2013). Perspectiva y expansión del sistema eléctrico ecuatoriano. Quito: CONELEC. Obtenido de https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/12/Vol3-Perspectiva-y-expansi%C3%B3n-del-sistema-el%C3%A9ctrico-ecuatoriano.pdf
Du Zhiye, L. T., & Daochun, H. (2010). Parallel Computation of Voltage Distribution Along Composite Insulator Strings and Electric Field Intensity on the Surface of Hardware Fittings. Transactions of China Electrotechnical Society.
Huang, D. C., Ruan, J. J., & Liu, S. B. (2010). Potential distribution along UHV AC transmission line composite insulator and electric field distribution on the surface of grading ring. Gaodianya Jishu/ High Voltage Engineering, 1442-1447.
Khare, T., Hasabe, R., & Mandlik, M. (2016). Electric Field and Potential Distribution along Porcelain Insulator under Polluted Conditions using Finite Element Method. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 5(5), 3531-3536.
Meeker, D. (2006). Finite Element Method Magnetics User’s Manual Version 4.2.
Meeker, D. (2018). Finite Element Method Magnetics: pyFEMM User’s Manual.
Muniraj, C., & Chandrasekar, S. (2012). Finite Element Modeling for Electric Field and Voltage Distribution along the Polluted Polymeric Insulator. World Journal of Modelling and Simulation, 8(4), 310-320.
Nicolopoulou, E., Gralista, E., Kontargyri, V., Gonos, I., & Stathopulos, I. (2011). Electric field and voltage distribution around composite insulators. XVII International Symposium on High Voltage Engineering. Hannover.
Ordal, M., Long, L., Bell, R., Bell, S., Bell, R., Alexander, R. J., & Ward, C. (1982). Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. APPLIED OPTIC, 22(7), 1099-1120.
Radwan, R., Mahdy, A., Abdel-Salam, M., & Samy, M. (2013). Electric field mitigation under extra high voltage power lines. IEEE Transactions on Dielectrics and Electrical Insulation, 54-62.
Sima, W., Yuan, T., Yang, Q., Xu, K., & Sun, C. (2010). Effect of non-uniform pollution on the withstand characteristics of extra high voltage (EHV) suspension ceramic insulator string. IET Generation, Transmission & Distribution , 445-455.
Transelectric, C. E. (2015). El Sistema de Transmisión de 500 kV contribuye al desarrollo energético del país. Obtenido de https://www.celec.gob.ec/78-quienes-somos/482-el-sistema-de-transmision-de-500-kv-contribuye-al-desarrollo-energetico-del-pais.html
Transeselectric, C. E. (2013). Estudio de impacto ambiental definitivo. Sistema de transmisión de extra alta tensión y sistemas asociados. 50. Quito.
Wadhwa, C. L. (1989). Generation, Distribution and Utilization of Electrical Energy. United States of America: John Wiley and Sons.
Zhang, B., He, J., Zeng, R., & Liang, X. (2010). Voltage distribution along a long ceramic insulator string in a high‐voltage tower window. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering., 811-823.

Published

2020-07-01 — Updated on 2020-07-01

How to Cite

RAMIREZ, J. D., Cabezas, K., Jiménez, P., Canelos, R., & Escobar, B. (2020). Calculation of Voltage Distribution along the Insulator Strings of a 500 kV Transmission Line Based on Finite Element Method. Enfoque UTE, 11(3), pp. 1 – 14. https://doi.org/10.29019/enfoqueute.v11n3.619

Issue

Section

Miscellaneous