Calculation of Voltage Distribution along the Insulator Strings of a 500 kV Transmission Line Based on Finite Element Method
DOI:
https://doi.org/10.29019/enfoqueute.v11n3.619Keywords:
High voltage suspension insulators; electric insulation; voltage distribution along the Insulator strings, FEMM, Finite Element MethodAbstract
This paper presents the voltage distributions along the insulator strings of a 500 kV overhead transmission line of Ecuador. The electrostatic problem related to the voltage distribution was solved using the Finite Element Method. A 1: 1 scale drawing is done on a CAD type drawing tool and then exported to the FEMM program that solves the problem and the results related to the voltages in the insulator string are obtained. The voltage differences in the different insulators that constitute a string are appreciated and the difference between the strings determined by the geometric location in the solution space is observed
Downloads
References
Antonov, A. S., Glushkov, D. A., & Kropotuhin, S. Y. (2016). A set of models for investigation of voltage distribution along suspension insulator string. 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW) (págs. 519-524). St. Petersburg, Russia: IEEE.
ARCONEL. (2013). Plan Maestro de Electrificación 2013-2022. Quito-Ecuador: ARCONEL.
Arora, R., & Mosch, W. (2011). High voltage insulation engineering. Institute of Electrical and Electronics Engineers.
Ashouri, M., Mirzaie, M., & Gholami, A. (2010). Calculation of Voltage Distribution along Porcelain Suspension Insulators Based on Finite Element Method. Electric Power Components and Systems, 820-831.
Benguesmia, H., M'Ziou, N., & Boubakeur, A. (2018). Simulation of the Potential and Electric Field Distribution on High Voltage Insulator using the Finite Element Method. Diagnostyka, 19(2), 41-52.
Bessedik, S. (2015). Contournement des isolateurs pollués. Algeria: Ph.D. thesis in Sciences, Department of Electrical Engineering, University of Oran.
Chen, L., & Liang, X. (2012). Computational analysis on voltage distribution along ceramic insulator strings of uhv ac transmission line. Gaodianya Jishu/ High Voltage Engineering,, 376-381.
CONELEC. (2013). Perspectiva y expansión del sistema eléctrico ecuatoriano. Quito: CONELEC. Obtenido de https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/12/Vol3-Perspectiva-y-expansi%C3%B3n-del-sistema-el%C3%A9ctrico-ecuatoriano.pdf
Du Zhiye, L. T., & Daochun, H. (2010). Parallel Computation of Voltage Distribution Along Composite Insulator Strings and Electric Field Intensity on the Surface of Hardware Fittings. Transactions of China Electrotechnical Society.
Huang, D. C., Ruan, J. J., & Liu, S. B. (2010). Potential distribution along UHV AC transmission line composite insulator and electric field distribution on the surface of grading ring. Gaodianya Jishu/ High Voltage Engineering, 1442-1447.
Khare, T., Hasabe, R., & Mandlik, M. (2016). Electric Field and Potential Distribution along Porcelain Insulator under Polluted Conditions using Finite Element Method. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 5(5), 3531-3536.
Meeker, D. (2006). Finite Element Method Magnetics User’s Manual Version 4.2.
Meeker, D. (2018). Finite Element Method Magnetics: pyFEMM User’s Manual.
Muniraj, C., & Chandrasekar, S. (2012). Finite Element Modeling for Electric Field and Voltage Distribution along the Polluted Polymeric Insulator. World Journal of Modelling and Simulation, 8(4), 310-320.
Nicolopoulou, E., Gralista, E., Kontargyri, V., Gonos, I., & Stathopulos, I. (2011). Electric field and voltage distribution around composite insulators. XVII International Symposium on High Voltage Engineering. Hannover.
Ordal, M., Long, L., Bell, R., Bell, S., Bell, R., Alexander, R. J., & Ward, C. (1982). Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. APPLIED OPTIC, 22(7), 1099-1120.
Radwan, R., Mahdy, A., Abdel-Salam, M., & Samy, M. (2013). Electric field mitigation under extra high voltage power lines. IEEE Transactions on Dielectrics and Electrical Insulation, 54-62.
Sima, W., Yuan, T., Yang, Q., Xu, K., & Sun, C. (2010). Effect of non-uniform pollution on the withstand characteristics of extra high voltage (EHV) suspension ceramic insulator string. IET Generation, Transmission & Distribution , 445-455.
Transelectric, C. E. (2015). El Sistema de Transmisión de 500 kV contribuye al desarrollo energético del país. Obtenido de https://www.celec.gob.ec/78-quienes-somos/482-el-sistema-de-transmision-de-500-kv-contribuye-al-desarrollo-energetico-del-pais.html
Transeselectric, C. E. (2013). Estudio de impacto ambiental definitivo. Sistema de transmisión de extra alta tensión y sistemas asociados. 50. Quito.
Wadhwa, C. L. (1989). Generation, Distribution and Utilization of Electrical Energy. United States of America: John Wiley and Sons.
Zhang, B., He, J., Zeng, R., & Liang, X. (2010). Voltage distribution along a long ceramic insulator string in a high‐voltage tower window. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering., 811-823.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Enfoque UTE
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.