Effect of biochar on the development of banana plants (Musa AAA) in farms with organic and conventional agriculture management

Authors

DOI:

https://doi.org/10.29019/enfoqueute.815

Keywords:

biochar; fertilizers; pyrolysis; Trichoderma spp

Abstract

The use of biochar amendments in banana soils has inspired research with the aim of comparing the effects of a biochar obtained from cocoa pods on banana development. The work was carried out on two farms, one under an organic agriculture model (FO) and the other conventional (FC). The doses per treatment in each farm consisted of 10 g (T1), 30 g (T2) and 50 g (T3) of biochar + bioferment with Trichoderma spp.; 100 g of Si2O (FO) and 100 g of urea (FC) were added to this mixture. All treatments were applied to the soil in front of the son. The highest values for plant height were 217.8 cm (FO, T2) and 266.7 cm (FC, T3), in pseudostem thickness the highest means were 41.1 cm (FO, T1) and 52.1 cm (FC, T3), much higher than the control. In bunch weight and number of hands, significant differences (p≤0.05) were obtained in both farms. The results revealed that the treatments had a positive effect on the growth of banana plants compared to the control on both farms.

Downloads

Download data is not yet available.

References

Abagale, S. A., Woodcock, C. M., Chamberlain, K., Osafo-Acquaah, S., van Emden, H., Birkett, M. A., Pickett, J. A., & Braimah, H. (2019). Attractiveness of host banana leaf materials to the banana weevil, Cosmopolites sordidus in Ghana for development of field management strategies. Pest Management Science, 75(2), 549–555.

Azuero-Gaona, B., Quevedo-Guerrero, J., & Garcia-Batista, M. (2020). Efecto del biocarbón y microorganismos en la producción y estado fitosanitario de banano orgánico en la parroquia La Victoria. Revista Científica Agroecosistemas, 8(2), 110–120.

Bass, A. M., Bird, M. I., Kay, G., & Muirhead, B. (2016). Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. The Science of the Total Environment, 550, 459–470.

de Paul Obade, V., & Lal, R. (2016). A standardized soil quality index for diverse field conditions. The Science of the Total Environment, 541, 424–434.

Ekpete, O. A., Marcus, A. C., & Osi, V. (2017). Preparation and Characterization of Activated Carbon Obtained from Plantain ( Musa paradisiaca ) Fruit Stem. Hindawi, 1–38.

Islam, M., Halder, M., Siddique, M. A. B., Razir, S. A. A., Sikder, S., & Joardar, J. C. (, 2019). Banana peel biochar as alternative source of potassium for plant productivity and sustainable agriculture. International Journal of Recycling of Organic Waste in Agriculture, 8(S1), 407–413.

Jitjamnong, J., Thunyaratchatanon, C., Luengnaruemitchai, A., Kongrit, N., Kasetsomboon, N., Sopajarn, A., Chuaykarn, N., & Khantikulanon, N. (2020). Response surface optimization of biodiesel synthesis over a novel biochar-based heterogeneous catalyst from cultivated (Musa sapientum) banana peels. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00655-8

Karim, A. A., Kumar, M., Singh, S. K., Panda, C. R., & Mishra, B. K. (2017). Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application. Journal of Analytical and Applied Pyrolysis, 123, 165–172.

Liu, P., Ptacek, C. J., & Blowes, D. W. (2019). Release of Nutrients and Trace Elements from Wood-, Agricultural Residue- and Manure-Based Biochars. International Journal of Environmental Research and Public Health, 13(4), 747–758.

Marín-Armijos, J., Garcia-Batista, R., & Barrezueta-Unda, S. (2018). Elaboración de biocarbón obtenido a partir de la cáscara del cacao y raquis del banano. Revista Científica Agroecosistemas, 6(3), 75–81.

Martinez-Acosta, A. (2011). Dinámica del Crecimiento y Desarrollo del Banano (Musa AAA Simmonds cvs. Gran Enano y Valery). Revista Facultad Nacional de Agronomía Medellín, 64(2).

Martínez Varona, R. (2013). Efecto del riego deficitario controlado en la productividad del banano. Revista de la Ciencias Biológico Agropecuarias, 22(2), 51–55.

Munongo, M. E., Nkeng, G. E., & Njukeng, J. N. (2017). Production and Characterization of Compost Manure and Biochar from Cocoa Pod Husks. International Journal of Advanced Scientific Research and Management, 2(2), 26–31.

Novotny, E. H., de Freitas Maia, C. M. B., de Melo Carvalho, M. T., & Madari, B. E. (2015). Biochar: pyrogenic carbon for agricultural use - a critical review. Revista Brasileira de Ciência do Solo, 39, 321–344.

Omulo, G., Banadda, N., Kabenge, I., & Seay, J. (2019). Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environmental Engineering Research, 24(2), 354–361.

Pérez Salas, R. A., Tapia Fernández, A. C., Soto, G., & Benjamin, T. (2013). The BioCarbon effect on Fusarium oxysporum f. sp. cubense and the banana plant development (Musa AAA). InterSedes, 14(27), 66–100.

Pradhan, S., Abdelaal, A. H., Mroue, K., Al-Ansari, T., Mackey, H. R., & McKay, G. (2020). Biochar from vegetable wastes: agro-environmental characterization. Biochar, 2(4), 439–453.

Quevedo-Guerrero, J., Delgado-Pontón, A., & Tuz-Guncay, I. (2019). Evaluación de la aplicación de fertilizante al pseudotallo de plantas cosechadas de banano (Musa x paradisiaca L.) y su efecto en la velocidad de crecimiento del retorno. Revista Científica Agroecosistemas, 7(2), 190–197.

Sánchez-Pilcorema, S., Condoy-Gorotiza, A., Sisalima-Morales, P., Barrezueta-Unda, S., & Jaramillo-Aguilar, E. (2020). Uso de biocarbones en medios de cultivo para el crecimiento de Trichoderma spp. in vitro. Revista Metropolitana de Ciencias Aplicadas, 3(2), 66–72.

Segura, R. A., Serrano, E., Pocasangre, L., Acuña, O., Bertsch, F., Stoorvogel, J. J., & Sandoval, J. A. (2015). Chemical and microbiological interactions between soils and roots in commercial banana plantations (Musa AAA, cv. Cavendish). Scientia Horticulturae, 197, 66–71.

SPSS, I. (2013). SPSS Statistics for Windows (Version 21) [Computer software]. IBM Corp. https://www.ibm.com/us-en/marketplace/spss-predictive-analytics-enterprise

Tenesaca, S., Quevedo, Q., & Garcia, R. (2019). Determinación de la dosis óptima de biocarbón como enmienda edáfica en el cultivo de banano (musa x paradisiaca l.) clon Williams. Revista Metropolitana de Ciencias Aplicadas, 7(3), 134-141.

Tsai, C.-H., Tsai, W.-T., Liu, S.-C., & Lin, Y.-Q. (2018). Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Conversion and Biorefinery, 8(2), 237–243.

Vásquez-Castillo, W., Racines-Oliva, M., Moncayo, P., Viera, W., & Seraquive, M. (2019). Calidad del fruto y pérdidas poscosecha de banano orgánico Musa acuminata en el Ecuador. Enfoque UTE, 10(4), 57–66.

Villaseñor, D., Luna, E., & Jaramillo, E. (2016). Protección del Ambiente Caracterización de las propiedades morfológicas , físicas y químicas de los suelos del humedal. Revista La Técnica, 17(3), 84–95.

Villaseñor, D., Noblecilla-Romero, Y., Molero-Naveda R, L.-R. E., Barrazueta-Unda, S., Huarquila-Henriquez, W., González-Porras, C., & Garzón-Montealegre, J. (2020). Optimal economic response of potassium fertilization on productive variables of banana (Musa spp.). Chilean journal of agricultural & animal sciences , 36(2), 161–170.

Villaseñor, D., Prado, R., Pereira da Silva, G., Carrillo, M., & Durango, W. (2020). DRIS norms and limiting nutrients in banana cultivation in the South of Ecuador. Journal of Plant Nutrition, 43(18), 2785–2796.

Published

2022-07-01

How to Cite

Barrezueta Unda, S., Condoy-Gorotiza, A., & Sánchez-Pilcorema, S. . (2022). Effect of biochar on the development of banana plants (Musa AAA) in farms with organic and conventional agriculture management. Enfoque UTE, 13(3). https://doi.org/10.29019/enfoqueute.815

Issue

Section

Miscellaneous