Implementation of a prototype for capture and digital processing of thermal images acquired from a UAV


  • Ricardo Llugsi Cañar Escuela Politécnica Nacional
  • Renato Escandón Escuela Politécnica Nacional



Thermal images, Dron, UAV, Paspberry Pi 3, Canny


The present work focuses on the development of a prototype for capturing and processing thermal images from an Unmanned Aerial Vehicle (UAV). The system consists of two parts: an "air" stage installed in a DJI Phantom 3 Standard. And another programmed into a receiving PC called "ground". The “air” system is composed by a Flir Lepton thermal camera, a Raspberry Pi card and a GPS module (for georeferencing). After that the images are sent to the PC using an Ad-Hoc network. The PC performs an analysis of the information through the use of histograms and edge detection (Canny algorithm). An algorithm is obtained in order to discriminate photographs with clearly heat points. Through the use of the algorithm the probability of detecting false positives in the images is reduced avoiding a waste of time and power during the processing. Finally, to verify the correct operation of the system, the prototype was tested in adverse weather conditions (fog) in the Pululahua Volcano sector.



Download data is not yet available.


Albrigtsen A. (2016) The application of unmanned aerial vehicles for snow avalanche search and rescue. Faculty of Science and Technology, Department of Engineering and Safety. The Artic University of Norway.
Ballari D., Acosta E., Espinoza A., Orellana D., Morocho V., Martin M., Hardter U. (2015). Análisis de imágenes uav de las islas Galápagos. Revista Geoespacial. No 12. ESPE.
Cengel Y., Ghajar A. (2015). Heat and Mass Transfer. 5a Edición. Editorial Wiley.
Christiansen P., Steen K., Jørgensen R., Karstoft H. (2014). Automated Detection and Recognition of Wildlife Using Thermal Cameras. Sensors Journal. Vol 14.
Gomes A. (2014). Computación visual y multimedia. Detección de Bordes. Universidad de Beira Interior. Portugal.
Intriago E. (2016). Análisis de tecnologías de Streaming: evaluación de protocolos y diseño de un caso de estudio. Universidad Politécnica de Madrid.
Karpowicz J. (2016). The Power and Potential of Drones. UAVs for Law Enforcement, First Response & Search and Rescue (SAR)). Commercial UAV Expo. Las Vegas.
Krawczyk J., Mazur A., Sasin T., Stokłosa A. (2015). Infrared building inspection with unmanned aerial vehicles. Transactions of the institute of aviation.
PROMAX (2014). Cámara Termográfica: Cómo funcionan y por qué pueden ser necesarias. Recuperado de: (accedido el 10/06/2017).
Raspberry Pi Foundation (2016). Recuperado de: (accedido el 25/07/2016).
Renfro B., Rosenquest J., Terry A., Boeker N. (2017). An Analysis of Global Positioning System (GPS) Standard Positioning System (SPS) Performance for 2015. Space and Geophysics Laboratory. Applied Research Laboratories. The University of Texas at Austin.
Rivera J. (2017). Evaluación de Método de Corrección Geométrica de Fotografía Aérea escala 1:1.000 capturada por vehículos aéreos no tripulados estableciendo una red Geodésica de cuarto orden. Eje 5: Cartografía, catastro y Sistemas de Información Geográfica Municipales. Ponencia 1. Universidad del Azuay.
Suarez A., Llugsi R., Lupera P., Chango R. (2017). Implementación de un Sistema Aéreo de Medición y Almacenamiento de Parámetros Meteorológicos Georreferenciados para Zonas Pequeñas. Revista Politécnica, Vol. 39, No 2, p. 17 – 26.
Szafron C. (2014). Application of thermal imaging in electrical equipment examination. Wroclaw University of Technology. Poland.
Zhang J., Jung J., Sohn G., Cohen M. (2015). Thermal infrared inspection of roof insulation using unmanned aerial vehicles. International Conference on Unmanned Aerial Vehicles in Geomatics, Canada.



How to Cite

Llugsi Cañar, R., & Escandón, R. (2018). Implementation of a prototype for capture and digital processing of thermal images acquired from a UAV. Enfoque UTE, 9(1), pp. 1 - 11.



Computer Science, ICTs