In Vitro Organic Control Alternatives for Dactylonectria torresensis in Blackberry (Rubus glaucus) in Ecuador

Authors

  • M. Racines-Oliva Universidad de las Américas
  • Evelin Alexandra Tamayo-Gutiérrez Universidad de las Américas
  • M. Jarrín Universidad de las Américas
  • F. Báez INIAP
  • C. Tello INIAP

DOI:

https://doi.org/10.29019/enfoque.v10n4.525

Keywords:

fungistatic, sporulation, organic, Mirtaceae, mycelium

Abstract

The following research evaluated, at laboratory level, the efficiency of fungicides of organic origin against chemical fungicides of conventional use in the control of the growth of Dactylonectria torresensis, considered a pathogen of economic importance that affects the blackberry (Rubus glaucus) in Ecuador. The objective of the study was to find natural, environmentally friendly alternatives that allow obtaining clean food for the population. For this purpose, the efficiency of conventional chemical synthesis fungicides was evaluated: Azoxystrobin, Benomil, Carbendazim, Difeconazole, Fosetyl Aluminum, Tachigaren, Propiconazole, Penconazole, Metalaxil and Thiabendazole each in doses of 100, 10 and 1 ppm, compared to the efficiency of organic synthesis fungicides: neem oil, mirtaceous extract, garlic extract, pentahydrate cupric sulfate, thyme extract, applied in doses of 100, 200, and 300 ppm. It was found that the mirtaceous extract controlled 100 % of the mycelial growth of Dactylonectria torresensis, with results similar to those obtained with Carbendazim and Azoxystrobin, it is concluded that if there is an alternative for the control of the fungus, which could be used commercially by decreasing in this way the use and harmful effects of conventional agrochemicals.

Metrics

Downloads

Download data is not yet available.

References

Alarcón, J., Garrido, L., y Leiva, L. (2011). Manejo fitosanitario del cultivo de mora (Rubus glaucus benth). ICA. Recuperado de http://www.ica.gov.co/getattachment/b7e061eb-ebd3-4f80-9518-c771712405eb/-nbsp;Manejo-fitosanitario-del-cultivo-de-la-mora.aspx
Bejarano, W. (1992). Manual de mora: (Rubus claucus Beth). Quito, Ecuador: Proexant.
Benalcázar, V. (2011). Evaluación in vitro en laboratorio de seis fungicidas con diferentes mecanismos de acción, como alternativa para el control de oidio (Sphaeroteca pannosa) en el cultivo aislado de rosas en el cantón Ibarra, provincia de Imbabura. Pontificia Universidad Católica del Ecuador. Recuperado de: dspace.pucesi.edu.ec/bitstream/11010/166/1/T72594.pdf
Camele, I.; Altieri, L.; De Martino, L.; De Feo, V.; Mancini, E., y Rana, G. (2012). In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components. International Journal of Molecular Science, 13(2), 2290-300.
Cedeño, L.; Carrero, C.; Quintero, K.; Pino, H., y Espinoza, W. (2004). Cylindrocarpon destructans and Neonectrina discophora var. Rubi Associated with Black Foot Rot on Blackberry (Rubus glaucus Benth) in Merida, Venezuela, Interciencia, 29(8), 455-460.
Corporación Colombiana de Investigación Agropecuaria. (2008). Compilación: Tecnología para la producción de frutales de clima frío moderado. Estación experimental La Suiza. Corpoica-libra. Rionegro-Santander-Colombia.
Devia, C. (2011). Agricultura limpia: Sistemas y prácticas de producción bajo el concepto de agricultura limpia. Recuperado de http://www.asohofrucol.com.co/archivos/biblioteca/2Agricultura%20limpia.pdf
Farag, K. (1989). Enhancing Ethephon Effectiveness by Modifyung Cuticular Transport of Stimulating Ethylene Production in Cranberry Fi-Uit (Tesis de doctorado). University de Wisconsisn-Madison, Estados Unidos.
Ferro, S. (2008). Caracterización de Cylindrocarpon spp., agente causal del pie negro en la vid (p. 181), (Tesis doctoral). Universidad Politécnica de Valencia.
Gaviria-Hernández, V.; Patiño, L., y Saldarriaga, E. (2013). Evaluación in vitro de fungicidas comerciales para el control de Colletotrichum spp., en mora de castilla. Ciencia y Tecnología Agropecuaria,14(1), 67-75.
Halleen, F.; Fourie, P., y Crous, P. (2007). Control of Black Foot Disease in Grapenive Nurseries. Plant Pathology, 56(4) 637-645.
Hernández A.; Bautista, S., y Velázquez, M. (2007). Prospectiva de extractos vegetales para controlar enfermedades poscosecha hortofrutícolas. Revista Fitotecnia Mexicana, 30(2), 119-123.
INIAP. (2016). El cultivo de la mora en el Ecuador. Recuperado de http://repositorio.iniap.gob.ec/bitstream/41000/4878/1/iniapsc355.pdf
Leiva, L. (2011). Manejo fitosanitario de la mora. Produmedios. Colombia
MAGAP. (2013). La mora de castilla. Características de la mora de castilla. MAGAP, 5-18.
Martínez, D. (2014). Identificación de hongos fitopatógenos relacionados con la marchitez de mora de castilla (Rubus glaucus Benth) en la provincia de Tungurahua mediante microscopía óptica y PCR (Tesis de pregrado). Universidad de las Fuerzas Armadas, Ecuador.
Müller-Riebau, M.; Berger, B., y Yegen, O. (1995). Chemical Composition and Fungitoxic Properties of Phytopathogenic Fungi of Essential Oils Selected Aromatic Plants Growing Wild in Turkey. Journal of Agricultural and Food Chemistry 43(8), 2262-2266.
Nychas, G. (1995). Natural Antimicrobials from Plants. En Gloud, G. W. (ed.). New Methods of Food Preservation, Cap. 4 (pp. 59-89). Londres, Reino Unido: Aspen Publishers.
Plotto, A.; Roberts, D., y Roberts, R. (2003). Evaluation of Plant Essential Oils as Natural Postharvest Disease Control of Tomato (Lycopersicon esculentum). Acta Horticulturae, 628, 737-745.
Rego, C.; Farropas, L.; Nascimento, T.; Cabral, A., y Oliveira, H. (2006). Black Foot of Grapevine: Sensivity of Cylindrocarpon destructans to Fungicides. Phytopathología Mediterránea, 45(4), S93-S100.
Rondón, O.; Sanabría, N., y Rondón, A. (2006). Respuesta in vitro a la acción de fungicidas para el control de antracnosis, Colletotrichum gloeosporioides Penz, en frutos de mango. Agronomía Tropical, 56(2), 219-235. Recuperado de http://www.scielo.org.ve/scieldo.php?script=sci_arttext&pid=S0002-192X2006000200005&Ing=es&tlng=es
Saltos, A. (2001). Investigación y desarrollo de tecnologías aplicadas a la conservación de frutas-mora de castilla (Rubus glaucus Benth), UTA-BID-FUNDACYT, Ambato, Ecuador.
Sánchez, J.; Iturralde, P.; Koch, A.; Tello, C.; Martínez, D.; Proaño, N.; Martínez, A., Viera, W.; Ayala, L., y Flores, F. (2019). Dactylonectria and Ilyonectria Species Causing Black Foot Disease of Andean Blackberry (Rubus Glaucus Benth) in Ecuador. Diversity, 11(11), 218.
Viera, W. (2002). Evaluación de fungicidas in vitro y pruebas de resistencia de cinco variedades de tomates de árbol (Solanum betaceum Cav.) para antracnosis (Colletotrichum gloeosporoides) (Tesis de grado) . Universidad Central del Ecuador, Ecuador .
Vincent, J. (1947). Distortion of fungal hyphae in the Presence of Certain Inhibitors. Nature, 159(850).

Published

2019-12-02

How to Cite

Racines-Oliva, M., Tamayo-Gutiérrez, E. A., Jarrín, M., Báez, F., & Tello, C. (2019). In Vitro Organic Control Alternatives for Dactylonectria torresensis in Blackberry (Rubus glaucus) in Ecuador. Enfoque UTE, 10(4), pp. 67 - 77. https://doi.org/10.29019/enfoque.v10n4.525

Issue

Section

Agronomy