Thermo-energetic analysis of the steam generation system in a 49 MW power plant

Authors

DOI:

https://doi.org/10.29019/enfoqueute.v11n3.653

Keywords:

boilers; efficiency; thermal and exergetic; algorithm; steam generators

Abstract

In the work carries out a comprehensive thermo-energetic analysis of the steam generation system of a 49 MW thermal power plant, which has not been rigorously studied from an energy point of view. In a algorithm synthesizes the methodology for calculating the gross thermal and exergetic performances of the boilers that comprise it, aspects that have not been interrelated in previous studies. The results show a high degree the harnessing of thermal energy and a low capacity for using the exergy available in the facilities, caused by the deterioration of some of its operationals parameters and by irreversibilities inherent in the process of transforming water into steam. The thermal and exergetic yields of the system amounted to 90.106 and 45.491%, respectively. The proposed algorithm foresees the calculation and the comparison of the real thermo-energetic parameters of the boilers with the nominal ones and the scientific and technical-organizational actions to develop out to achieve superior thermo-exergetic performances. Its future implementation will take into account the analysis of the net thermal yields, the economic-environmental indicators and the energy-operational optimization of the boilers.

Downloads

Download data is not yet available.

References

Nugroho Agung P., Ria L., Danar Susilo W., Valiant Lukad P., Maedanu F., Muhammad I., Lip Huat S., Renanto H. (2017). Exergy Analysis of Boiler Process Powered by Biogas Fuel in Ethanol Production Plant: a Preliminary Analysis. Energy Procedia, 142: 216-223. https://doi.org/10.1016/j.egypro.2017.12.035.

Andrade Cando, A. X.; Quitiaquez Sarzosa, W. y Toapanta, L. F. (2020). CFD Analysis of a Solar Flat Plate Collector with Different Cross Sections. Enfoque UTE, 11(2), pp. 95-108. doi: 10.29019/enfoque.v11n2.601

Annaratone, D. (2019). Steam Generator. Berlin: Springer.

Arshad, A.; Muhammad, H.; Habib, A. et al. (2019). Energy and Exergy Analysis of Fuel Cells: A Review. Thermal Science and Engineering Progress 9(-), p: 308–321. doi: 10.1016/j.tsep.2018.12.008

Bluestein, M. (2020). Thermodynamics and Heat Power. Boca Raton: Taylor & Francis.

Borroto, A., y Rubio, Á. (2010). Combustión y generación de vapor. La Habana, Cuba: Editorial Félix Varela.

Buecker, B. (2012). Basics of Boiler and Heat Recovery Steam Generator Design. Oklahoma: Penn Well Corporation.

Camaraza, Y. (2017). Introducción a la termotransferencia. La Habana, Cuba: Editorial Universitaria.

Camaraza, Y. (2018). Introducción a la termotransferencia (2.º ed.). La Habana, Cuba: Editorial Universitaria.

Camaraza, Y. (2020a). Transferencia de calor por conducción. La Habana, Cuba: Editorial Universitaria.

Camaraza, Y. (2020b). Transferencia de calor por convección (2.º ed.). La Habana, Cuba Editorial Universitaria. La Habana, Cuba.

Çengel, Y. y Boles, M. (2014). Thermodynamics: An Engineering Approach, (8.º ed.). McGraw-Hill.

Centeno-González, F. O.; Silva, E. E.; Villa, H. F. et al. (2017). CFD Modeling of Combustion of Sugarcane Bagasse in an Industrial Boiler. Fuel, 193, p. 31-38. doi: 10.1016/j.fuel.2016.11.105.

Cortés, M.; Cornes, Y.; Alomá. I. y González, E. (2019). Evaluación del sistema energético en el central azucarero Quintín Bandera. Centro Azúcar, 46(3), 66-78.

Edmonds, W. y Kennedy, T. (2017). An Applied Guide to Reseacrh Designs: Quantitative, Qualitative, and Mixed Methods (2.º ed.). Los Ángeles, USA: SAGE Publications.

Flynn, D. (2013). Thermal Power Plant Simulation and Control. London: Springer.

Ganapathy, V. (2013). Industrial Boilers and Heat Recovery Steam Generators: Design, Applications and Calculations. New York: Marcel Dekker, Inc.

Harish, S., y Baldi, S. (2018). Monitoring Energy Efficiency of Condensing Boilers via Hybrid First Principle Modelling and Estimation. Energy, 142, 121-129.

Hasnain, S.; Khurram, M.; Akhter, J.; Ahmed, B. y Abbas, N. (2020). Selection of an Industrial Boiler for a Soda-Ash Production Plant Using Analytical Hierarchy Process and Topsis Approaches. Case Studies in Thermal Engineering, 19(-) 100636, p:1-14 doi: 10.1016/j.csite.2020.100636

ISO International Organization for Standardization. (2018). ISO 50001 Energy Management Systems-Requirements with Guidance for Use. Geneva, Switzerland.

Javadi, M.; Hoseinzadeh, S.; Ghasemiasl, R.; Heyns, P. y Chamkha, A. (2019). Sensitivity Analysis of Combined Cycle Parameters on Exergy, Economic, and Environmental of a Power Plant. Journal of Thermal Analysis and Calorimetry, 13(3), p:1-10. doi: 10.1007/s10973-019-08399-y

Jiménez, J.; Jarquin, G.; Durán, M. y García, J. (2011). Análisis exergético del generador de vapor de 350 MW a cargas parciales. MACI, 3(-), 715-718.

Jiménez, R.; Madrigal, J.; Lapido, M. y Vidal, D. (2016). Método para la evaluación de la eficiencia e impacto ambiental de un GV. Ingeniería Energética, 37(2), 135-144.

Kitto, J. B. y Stultz, S. C. (2015). Steam, its Generation and Use. Ohio: The Babcock & Wilcox Company.

Krasniqi-Alidema, D.; Filkoski, R. y Krasniqi, M. (2018). Exergy Efficiency Analysis of Lignite-Fired Steam Generator. Thermal Science 22(5), p. 2087-2101. doi: 10.2298/TSCI180131265

Labañino, N. (2015). Diagnóstico energético de calderas de vapor: estudio de casos. Tesis de Ingeniería, Facultad de Metalurgia y Electromecánica, Universidad de Moa, Cuba.

Martha de Souza, G. F. (2012). Thermal Power Plant Performance Analysis. London: Springer.

Pankratov, G. (1987). Problemas de Termotecnia. Moscú, URSS: Editorial MIR.

Patro, B. (2015). Efficiency Studies of Combinati on Tube Boilers. Alexandria Engineering Journal. p. 1-10. doi: 10.1016/j.aej.2015.12.007

Peduzzi, E.; Boissonnet, G. y Maréchal, F. (2016). Biomass modelling: Estimating Thermodynamic Properties from the Elemental Composition. Fuel, 181, p. 207-217. doi: 10.1016/j.fuel.2016.04.111.

Pérez, C.; Cordovés, A. y Terán, J. (2016). Design and Implementation of a Control System to Improve the Quality of the Combustion Gases in the Fire-tube Boiler of 5 BHP. Enfoque UTE, 7(2), 55-68. doi: 10.29019/enfoqueute.v7n2.95

Pérez-Sánchez, A.; Fernández, F. y González, R. (2017). Evaluación de la generación de vapor de la fábrica de refrescos 23 de agosto, en Camagüey. Mutis, 7(1), 7-19, doi: 10.21789/22561498.1198.

Quitiaquez, W.; Simbaña, I.; Isaza-Roldán, C. A. et al. (2020). Review of the State of Art of DX-SAHP Systems to Obtain Domestic Hot Water. Enfoque UTE, 11(2), 29-46. doi. 10.29019/enfoque.v11n2.565.

Rastogi, P.; Sharma, N. y Gupta, B. (2018). Energy and Exergy Analysis of Boiler in Bagasse Based 20 MW Steam Power Plants. Int. J. of Eng. and Tech., 4(2), 444-449.

Rodríguez‐Ramos, A. y Llanes‐Santiago, O. (2014). Diagnóstico de fallos en un GV BKZ‐340‐140‐29M utilizando herramientas de lógica difusa. Ing. Mecánica, 17(2), 147-156.

Rubio, A. (2015). Generadores de vapor. Funcionamiento y explotación.

Santa Clara, Cuba: Editorial Feijóo.

Tozlu, A.; Büyükmurat, Y. y Özahi, E. (2020). Thermoeconomic Analyses of an Actual

Power Plant. Turkish Journal of Electromechanics & Energy, 5(1), 9-15.

Valencia, G.; Piero, J. y Campos, J. (2019). Energy Optimization of Industrial Steam Boiler using Energy Performance Indicator. Int. J. of Energy Eco. and Policy, 9(6), 109-117.

Valles, A.; Acosta, L. y Pérez, A. (2014). Evaluación energética de los GV F1-2 y BH-109 de una refinería cubana de petróleo. Revista Especializada en Ingeniería, 8(-), 1-10.

Velázquez, A.; Corrales, J. y Pérez, L. (2019). Evaluación termoexergética del GV del campus Lenin de la Universidad de Las Tunas. Opu

Published

2020-07-01

How to Cite

Retirado Mediaceja, Y., Laurencio Alfonso, H. L., Sánchez-Escalona, A. A., Camaraza-Medina, Y., Salazar Corrales, M. F., Lamorú Urgelles, M., & Góngora Leyva, E. (2020). Thermo-energetic analysis of the steam generation system in a 49 MW power plant. Enfoque UTE, 11(3), pp. 87 – 101. https://doi.org/10.29019/enfoqueute.v11n3.653

Issue

Section

Miscellaneous