Monitoring System of Environmental Variables Using a Wireless Sensor Network and Platforms of Internet of Things

Authors

  • Manuel Quiñones-Cuenca Universidad Técnica Particular de Loja
  • Víctor González-Jaramillo Universidad Técnica Particular de Loja
  • Rommel Torres Universidad Técnica Particular de Loja
  • Miguel Jumbo Universidad Técnica Particular de Loja

DOI:

https://doi.org/10.29019/enfoqueute.v8n1.139

Keywords:

Environment, IoT, weather stations, Wi-Fi, WSN.

Abstract

This work proposes a system for collecting meteorological data using a Wireless Sensor Network (WSN), that is able to transmit data in real-time. The system automatizes the process of collecting the data in a continuous manner for long periods of time, for this, the module is equipped with a source of solar energy that allows autonomous operation. In order to obtain viability of design and prototype implementation, the construction of two systems was proposed based on DigiMesh and Wi-Fi; those prototypes could be applied to different scenarios such as urban and rural areas. Additionally, it was performed an evaluation of broadcasting of information to platforms of Internet of Things (IoT), where the data collected by the nodes will be managed and displayed. This system was conceived as a low-cost alternative compared with conventional weather stations that offer these facilities and are based on free hardware and software components. Finally, the validation of the obtained results was performed using a statistical analysis with the collected data of the weather station Davis Vantage Pro, obtaining a maximum average relative error of 4.93%.

Metrics

Downloads

Download data is not yet available.

References

Asghar, M. & Mohammadzadeh, N. (2015). Design and simulation of energy efficiency in node based on MQTT protocol in Internet of Things. 2015 International Conference On Green Computing And Internet Of Things (ICGCIOT). http://dx.doi.org/10.1109/icgciot.2015.7380689
Aguilera, J. & Hontario, L. (2011). Dimensionado de sistemas fotovoltaicos autónomos [en línea]. Departamento de Electrónica, Escuela Politécnica Superior, Universidad de Jaén. Jaén (España): Grupo IDEA <https://manuelberaun.files.wordpress.com/2011/12/dimensionado-de-sfv-autonomos.pdf> [consulta: 1/4/16].
Bolivar, l. & Alexandre da Silva, G. (2015). Solar radiation monitoring using electronic embedded system Raspberry Pi database connection MySQL, Ubidots and TCS-230 sensor. 2015 CHILEAN Conference On Electrical, Electronics Engineering, Information And Communication Technologies (CHILECON). http://dx.doi.org/10.1109/chilecon.2015.7400420
Faludi, R. (2011). Building wireless sensor networks (1st ed.). Beijing: O'Reilly. 392 p. ISBN: 978-0-596-80773-3.
Kuppusamy, P. (2016). Smart Home Automation using Sensors and Internet of Things. Asian Journal Of Research In Social Sciences And Humanities, 6(8), 2642. http://dx.doi.org/10.5958/2249-7315.2016.00771.1
Lin, C., Zadorozhny, V., Krishnamurthy, P., Park, H., & Lee, C. (2011). A Distributed and Scalable Time Slot Allocation Protocol for Wireless Sensor Networks. IEEE Transactions On Mobile Computing, 10(4), 505-518. http://dx.doi.org/10.1109/tmc.2010.163
MATHWORKS (2016). Understand Your Things, the open IoT platform with MATLAB analytics. [en línea]. ThingSpeak: < https://thingspeak.com/ > [consulta: 7/4/16].
NATURALEZAYCULTURA (2016). Reserva de Biosfera Podocarpus - El Cóndor [en línea]. Loja (Loja, Ecuador): Naturaleza y Cultura Internacional <http://www.naturalezaycultura.org/spanish/htm/ecuador/areas-andes-podocarpus.htm> [consulta: 2/11/16].
OMM (2014). Guía de instrumentos y métodos de observación meteorológicos [en línea]. Ginebra (Suiza): OMM <http://l ibrary.wmo.int/pmb_ged/wmo_8-2014_es.pdf> [consulta: 10/09/16].
Perera, C., Liu, C., & Jayawardena, S. (2015). The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey. IEEE Transactions On Emerging Topics In Computing, 3(4), 585-598. http://dx.doi.org/10.1109/tetc.2015.2390034
PHANT (2015). Documentation, phant.io. Colorado (Boulder, CO, United States): SparkFun Electronics <http://phant.io/docs/> [consulta: 5/4/16].
Prat, l. (2015). Dimensionado de Sistemas Fotovoltaicos [en línea]. Universitat Politécnica de Catalunya. Barcelona (España): Departamento de Ingeniería Electrónica <http://datateca.unad.edu.co/contenidos/358054/dimensionado_sistema_fotovoltaico.pdf> [consulta: 3/4/16].
OGC (2009). Sensor Web Enablement (SWE) [en línea]. Massachusetts (Wayland, USA) http://www.opengeospatial.org/ogc/markets-technologies/swe [consulta: 2/12/16].
Quezada, V., Morales, l. E., & Riofrío, l. (2013). Diseño y fabricación de un equipo portable para provisión de energía eléctrica basado en el aprovechamiento de energía solar, orientado a aplicaciones de camping [en línea]. Repositorio Institucional de Trabajos de fin de Titulación de la Universidad Técnica Particular de Loja. Loja (Loja, Ecuador): UTPL < http://dspace.utpl.edu.ec/handle/123456789/7865> [18/07/2015].
Stackhouse, P. (2016). NASA Surface meteorology and Solar Energy: RETScreen Data. USA: Atmospheric Science Data Center <https://eosweb.larc.nasa.gov/cgi-bin/sse/retscreen.cgi?email=rets%40nrcan.gc.ca&step=1&lat=-3.987667&lon=-79.196763&submit=Submit.> [consulta: 5/07/16].
UBIDOTS (2014). Ubidots API Documentation [en línea]. Bogotá (Colombia): UBIDOTS <http://ubidots.com/docs/get_started/overview.html> [consulta: 3/4/16].
Wong, B. & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 84, 505-517. http://dx.doi.org/10.1016/j.envsoft.2016.07.020

Published

2017-02-24

How to Cite

Quiñones-Cuenca, M., González-Jaramillo, V., Torres, R., & Jumbo, M. (2017). Monitoring System of Environmental Variables Using a Wireless Sensor Network and Platforms of Internet of Things. Enfoque UTE, 8(1), pp. 329 - 343. https://doi.org/10.29019/enfoqueute.v8n1.139