Susceptibility of six insecticides in brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) in Kallar tract of Punjab, Pakistan; 2015-2019

Authors

DOI:

https://doi.org/10.29019/enfoqueute.867

Keywords:

Insecticide resistance, Kallar tract, Chemical control, Basmati rice, Brown planthopper

Abstract

Brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is an economically important insect pest of rice crop worldwide including Pakistan. The use of chemicals insecticides to control the BPH population has been considered an effective strategy. However, long-term and intensive use of insecticides has resulted in resistance against this pest. In this study, six recommended insecticides were tested against BPH over the period of 2015-2019 to determine the susceptibility level. From 2015-19, susceptibility of BPH was reduced to all tested insecticides. Increasing trend of LC50 values was recorded in fipronil (18.23-35.11 mg/L), imidacloprid (64.22-128.8 mg/L), buprofezin (185.01-315.0 mg/L), chlorantranilipyrole (199.2-263.3 mg/L), pymetrozine (248.2-315.5 mg/L), and nitenpyram (21.07-34.3 mg/L) respectively from 2015 to 2019. Correlation coefficient values indicated a significant relation (P < 0.05) between fipronil, imidacloprid, and buprofezin. The study will be helpful for resistance management strategies to prevent the resistance development in BPH against insecticides.

Metrics

Downloads

Download data is not yet available.

References

Ali, E., Liao, X., Yang, P., Mao, K., Zhang, X., Shakeel, M., Salim, M. A., Wan, H., & Li, L. (2017). Sublethal effects of buprofezin on development and reproduction in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Scientific Reports, 7, artículo 16913. https://doi.org/10.1038/s41598-017-17190-8

Arshad, M., Ullah, M. I., Afzal, M., Khalid, S., Raza, A. B. M., & Iftikhar, Y. (2019). Evaluation of plant extracts for the management of citrus leafminer, Phyllocnistis citrella (Lepidoptera: Gracillariidae). Kuwait Journal of Science, 46(1), 58–67. https://journalskuwait.org/kjs/index.php/KJS/article/view/5880/314

Atta, B., Gogi, M. D., Arif, M. J., Mustafa, F., Raza, M. F., Hussain, M. J., Farooq, M. A., Nisar, M. J., & Iqbal, M. (2015). Toxicity of some insect growth regulators (IGRs) against different life stages of dusky cotton bugs Oxycarens hyalinipennis (Hemiptera: Lygaeidae: Oxycareninae). Bulgarian Journal of Agricultural Science, 21(2), 367–371. https://www.agrojournal.org/21/02-25-1.pdf

Atta, B., Rizwan, M., Sabir, A. M., Gogi, M. D., Farooq, M. A., & Batta, Y. A. (2019). Efficacy of entomopathogenic fungi against brown planthopper Nilaparvata Lugens (Stål) (Homoptera: Delphacidae) under controlled conditions. Gesunde Pflanzen, 72, 101–112. https://doi.org/10.1007/s10343-019-00490-6

Atta, B., Rizwan, M., Sabir, A. M., Gogi, M. D., Farooq, M. A., & Jamal, A. (2020). Lethal and sublethal effects of clothianidin, imidacloprid and sulfoxaflor on the wheat aphid, Schizaphis graminum (Hemiptera: Aphididae) and its coccinellid predator, Coccinella septempunctata. International Journal of Tropical Insect Science, 41, 345–358. https://doi.org/10.1007/s42690-020-00212-w

Chang G. C., & Snyder W. E. (2008). Pymetrozine causes a nontarget pest, the Colorado potato beetle (Coleoptera: Chrysomelidae), to leave potato plants. Journal of Economic Entomology, 101, 74–80.

Garrood, W. T., Zimmer, C. T., Gorman, K. J., Nauen, R., Bass, C., & Davies, T. G. E. (2016). Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across South and East Asia. Pest Management Science, 72(1), 140–149. https://doi.org/10.1002/ps.3980

Gorman, K., Liu, Z., Denholm, I., Brüggen, K., & Nauen, R. (2008). Neonicotinoid resistance in rice brown planthopper, Nilaparvata lugens. Pest Management Science, 64(11), 1122–1125. https://doi.org/10.1002/ps.1635

Harris, C., & Trisyono, Y. A. (2019, December 16–19). Classifying, detecting, and predicting infestation patterns of the brown planthopper in rice paddies. 18th IEEE International Conference on Machine Learning and Applications (ICMLA). pp. 246–251, http://doi:10.1109/ICMLA.2019.00046

Hemingway, J., Karunaratn, S. H. P. P., & Claridge, M. F. (1999). Insecticide resistance spectrum and underlying resistance mechanisms in tropical populations of the brow planthopper (Nilaparvata lugens) collected from rice and the wild grass Leersia hexandra. International Journal of Pest Management, 45, 215–223. https://doi.org/10.1080/096708799227824

Heong, K. L., & Hardy, B. (2009). Planthoppers: New threats to the sustainability of intensive rice production systems in Asia. Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stål. International Rice Research Institute. 357–368.

Heong, K. L., Wong, L., & Delos Reyes, J. H. (2015). Addressing planthopper threats to Asian rice farming and food security: Fixing insecticide misuse. In K. L. Heong, J. Cheng & M. M. Escalada (Eds.), Rice Planthoppers (pp. 65–76). Springer.

Horgan, F. (2009). Mechanisms of resistance: A major gap in understanding planthopper-rice interactions. In K. L. Heong, & B. Hardy (Eds.), Planthoppers: New threats to the sustainability of intensive rice production systems in Asia (pp. 281–302). International Rice Research Institute.

Kanno, H. (1987). An approach to a novel insect growth regulator buprofezin (Applaud). Pure and Applied Chemistry, 59(8), 1027–1032. https://doi.org/10.1351/pac198759081027

Khan, S., Shah, S. A., Ali, S., Ali, A., Almas, L. K., & Shaheen, S. (2022). Technical efficiency and economic analysis of rice crop in Khyber Pakhtunkhwa: A stochastic frontier approach. Agriculture, 12(4), 503. https://doi.org/10.3390/agriculture12040503

Khoa, D. B., Thang, B. X., Liem, N. V., Holst, N., & Kristensen, M. (2018). Variation in susceptibility of eight insecticides in the brown planthopper Nilaparvata lugens in three regions of Vietnam 2015-2017. PLOS ONE, 13(10), artículo e0204962, 115–126. https://doi.org/10.1371/journal.pone.0204962

Liao, X., Xu, P. F., Gong, P. P., Wan, H., & Li, J. H. (2021). Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China. Insect Science, 28(1), 115–126. https://onlinelibrary.wiley.com/doi/epdf/10.1111/1744-7917.12764

Liu, J. L., Yu, J. F., Wu, J. C., Yin, J. L., & Gu, H. N. (2008). Physiological responses to Nilaparvata lugens in susceptible and resistant rice varieties: Allocation of assimilates between shoots and roots. Journal of Economic Entomology, 101(2), 384–390. https://doi.org/10.1093/jee/101.2.384.

Liu, Z. W., Wu, J. C., Zhang, Y. X., Liu, F., Xu, J. X., & Bao, H. B. (2015). Mechanism of rice planthopper resistance to insecticides. In K. L., Heong, J. A., Cheng, & M. M., Escalada (Eds.), Rice planthopper: Ecology, management, socio economics and policy (pp. 117–141). Zhejiang University Press; Hangzhou; Springer Science Publisher.

Matsumura, M., Takeuchi, M., Satoh, M., Sanada-Morimura, S., Otuka, A., Watanabe, T., & Thanh, D. V. (2008). Species specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Management Science, 64(11), 1115–1121. https://doi.org/10.1002/ps.1641

Matsumura, M., Sanada-Morimura, S., Otuka, A., Ohtsu, R., Sakumoto, S., Takeuchi, H., & Satoh, M. (2013). Insecticide susceptibilities in populations of two rice planthoppers, Nilaparvata lugens and Sogatella furcifera, immigrating into Japan in the period 2005-2012. Pest Management Science, 70(4), 615–622. https://doi.org/10.1002/ps.3590

Matsumura, M., Sanada-Morimura, S., Otuka, A., Sonoda, S., Van, T. D., Van, C. H., Van, T. P., Loc, P. M., Liu, Z. W., Zhu, Z. R., Li, J. H., Wu, G., & Huang, S. H. (2017). Insecticide susceptibilities of the two rice planthoppers Nilaparvata lugens and Sogatella furcifera in East Asia, the red River Delta, and the Mekong Delta. Pest Management Science, 74(2), 456–464. https://doi.org/10.1002/ps.4729

Mota-Sanchez, D. & Wise J.C. (2022). The Arthropod Pesticide Resistance Database.

Michigan State University. http://www.pesticideresistance.org

Nagata, T. (2002). Monitoring on insecticide resistance of the brown planthopper and the white backed planthopper in Asia. Journal of Asia Pacific Entomology, 5(1), 103–111.

Nagata, T., Kamimuro, T., Wang, Y. C., Han, S. G., & Noor, N. M. (2002). Recent status of insecticide resistance of long distance migrating rice planthoppers monitored in Japan, China and Malaysia. Journal of Asia-Pacific Entomology, 5(1), 113–116. https://doi.org/10.1016/S1226-8615(08)60139-9

Nicholson, W., Senn, R., Fluckiger, C. R., & Fuog, D. (1996). Pymetrozine – A novel compound for control of whiteflies. In D. Gerling, & R., Mayer. (Eds.), Bemisia 1995: Taxonomy, biology, damage, control and management (pp. 635–639). Intercept.

Normile, D. (2008). Reinventing rice to feed the world. Science, 321(5887), 330–333. https://doi.org/10.1126/science.321.5887.330

Pakistan Economic Survey (2020-21). Finance Division, Government of Pakistan, pp. 1-566. https://www.pc.gov.pk/uploads/cpec/PES_2020_21.pdf

Peng, W., ZuoPing, N., Shuai, Z., Tiantian, J., Lirong, T., Song, D., & CongFen, G. (2013). Resistance monitoring to conventional insecticides in brown planthopper, Nilaparvata lugens (hemiptera: delphacidae) in main rice growing regions in China. Chinese Journal of Rice Science, 27, 191–197.

Polston, J. E., & Sherwood, T. (2003). Pymetrozine interferes with transmission of tomato yellow leaf curl virus by the whitefly Bemisia tabaci. Phytoparasitica, 31, 490–498. https://doi.org/10.1007/BF02979742

Punyawattoe, P., Han, Z. H., Sriratanasak, W., Arunmit, S., Chaiwong, J., & Bullangpoti, V. (2013). Ethiprole resistance in Nilaparvata lugens (Hemiptera: Delphacidae): Possible mechanisms and cross-resistance. Applied Entomology and Zoology, 48, 205–221. https://doi.org/10.1007/s13355-013-0174-6

Rizwan, M., Atta, B., Sabir, A. M., & Sabir, M. (2019, December 19–20). Rice planthoppers: Issue and solution in Pakistan. 2nd International Conference on Applied Zoology, Government College University, Faisalabad, Pakistan. https://gcuf.edu.pk/news-single?news=2084

Sabir, A. M., Shah, Z. U., Sabar, M., Rizwan, M., Atta, B., Qadir, A., & Asghar, M. (2019, March 4–6). Rice planthoppers: Potential threat to the sustainable rice production in the Punjab, Pakistan. 39th Pakistan Congress of Zoology, Department of Zoology, Islamia College University, Peshawar, Pakistan, pp 225–226, https://www.zsp.com.pk/PRO2019.pdf.

Uchida, M., Asai, T., & Sugimoto, T. (1985). Inhibition of cuticle deposition and chitin biosynthesis by a new insect growth regulator, Buprofezin, in Nilaparvata lugens Stål. Agricultural and Biological Chemistry, 49, 1233–1234. https://doi.org/10.1080/00021369.1985.10866885

Vanitha, K., Suresh, S., & Gunathilagaraj, K. (2011) Influence of brown planthopper Nilaparvata lugens (Stal.) feeding on nutritional biochemistry of rice plant. Oryza, 48(2), 142–146. https://bit.ly/3OKSDsO

Wang, Y. H., Gao, C. F., Zhu, Y. C., Chen, J., Li, W. H., Zhuang, Y. L., Dai, D. J., Zhou, W. J., Yong, C., & Shen, J. L. (2008). Imidacloprid susceptibility survey and selection risk assessment in field populations of Nilaparvata lugens (Homoptera: Delphacidae). Journal of Economic Entomology, 101(2), 515–522. https://doi.org/10.1093/jee/101.2.515

Wang, Y., Gao, C., Xu, Z., Zhu, Y.C., Zhang, J., Li, W., Dai, D., Lin, Y., Zhou, W., & Shen, J. (2008). Buprofezin susceptibility survey, resistance selection and preliminary determination of the resistance mechanism in Nilaparvata lugens (Homoptera: delphacidae). Pest Management Science, 64(10), 1050–1056. https://doi.org/10.1002/ps.1606

Wen, Y., Liu, Z., Bao, H., & Han, Z. (2009). Imidacloprid resistance and its mechanisms in field populations of brown planthopper, Nilaparvata lugens Stål in China. Pesticide Biochemistry and Physiology, 94(1), 36–42. https://doi.org/10.1016/j.pestbp.2009.02.009

Wu, S. F., Zeng, B., Zheng, C., Mu, X. C., Zhang, Y., Hu, J., Zhang, S., Gao, C. F., & Shen, J. L. (2018). The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012–2016. Scientific Reports, 8, artículo 4586. https://doi.org/10.1038/s41598-018-22906-5

Yang, Y., Dong, B., Xu, H., Zheng, X., Tian, J., Heong, K. L., & Lu, Z. (2014). Decrease of insecticide resistance over generations without exposure to insecticides in Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Economic Entomology, 107(4), 1618–1625. https://doi.org/10.1603/EC13550

Zhang, X. L., Liu, X. Y., Zhu, F. X., Li, J. H., You, J., & Lu, P. (2014). Field evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) in China. Crop Protection, 58, 61–66. https://doi.org/10.1016/j.cropro.2013.12.026

Zhang, X., Liao, X., Mao, K., Zhang, K., Wan, K., & Li, J. (2016). Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (Stål) in China 2012-2014. Pesticide Biochemistry and Physiology, 132, 13–20. https://doi.org/10.1016/j.pestbp.2015.10.003

Miao, Y. X., Stewart, B. A., & Zhang, F. S. (2011). Long-term experiments for sustainable nutrient management in China: A review. Agronomy for Sustainable Development, 31, 397–414. https://doi.org/10.1051/agro/2010034

Published

2022-10-01

How to Cite

Rizwan, M., Afzal, M., Arshad, M., Rizwan, M., Mubeen, N., Muhammad Raza, A. B., Atta, B., & Makhdoom Sabir, A. (2022). Susceptibility of six insecticides in brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) in Kallar tract of Punjab, Pakistan; 2015-2019. Enfoque UTE, 13(4). https://doi.org/10.29019/enfoqueute.867

Issue

Section

Miscellaneous