Etapas óptimas de sistemas de captación y almacenamiento de energía de RF

Autores/as

DOI:

https://doi.org/10.29019/enfoqueute.883

Palabras clave:

Recolección de energía, Radiofrecuencia, Multiplicadores de voltaje, Rectena, Etapas

Resumen

Este documento revisa los modelos de sistemas de captación de energía de Radiofrecuencia (RF) a partir de la información recogida en varios artículos publicados en repositorios científicos de todo el mundo. Tiene como objetivo registrar información relevante de cada uno de ellos, como: topología del sistema, circuitos y características de cada etapa, componentes electrónicos utilizados, dimensiones, entre otros, para tabular y cotejar estos datos, con el fin de determinar cuál es el que presenta mejores características por etapa y así considerarlo para realizar una investigación profunda y mejorar su diseño para captar energía. En este estudio se utilizó una metodología dividida en cuatro fases: investigación, lectura científica, extracción de información relevante y tabulación. Una vez realizado el estudio de los sistemas seleccionados, se compararon los resultados obtenidos en cada uno y se seleccionó la topología, circuitos o elementos que obtuvieron mejores resultados para las etapas: Antena, Acoplamiento, Rectificación, Administración de energía y Almacenamiento de energía. Finalmente, se creó una aplicación para dispositivos Android en la que se encuentra toda la información recolectada y los resultados obtenidos de manera que funcione como una fuente de consulta para futuras investigaciones.

Metrics

Descargas

La descarga de datos todavía no está disponible.

Citas

Adnan, S., Hoq, T., Karim, Z., Alam, K., Howlader, M. y Rajkumar, R. (2019). Energy Harvesting-Technical Analysis of Evolution, Control Strategies, and Future Aspects, Journal of Electronic Science and Technology, 116-125. https://doi.org/10.11989/JEST.1674-862X.80314201

Ali, M., Albasha, L. y Qaddoumi, N. (2013). RF energy harvesting for autonomous wireless sensor networks, 8th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 78-81. http://dx.doi.org/10.1109/DTIS.2013.6527782

Arrawatia, M., Baghini, M.S. y Kumar, G. (2016). Broadband Bent Triangular Omnidirectional Antenna for RF Energy Harvesting, IEEE Antennas and Wireless Propagation Letters, 15, 36-39. http://dx.doi.org/10.1109/LAWP.2015.2427232

Awais, M., Rehman, S., Asif, M., Usman, M. R. y Shin, S.Y. (2019). RF Energy Harvesting for Low Power Applications Using Rectenna Operating at 2.45 GHz. International Conference on Information and Communication Technology Convergence (ICTC), 789-793. http://dx.doi.org/10.1109/ICTC46691.2019.8940014

Balarezo, D., Gordón, C., Cuji J. y Salazar, F. (2022). Conditioning System for an Electromagnetic Energy Collection Device. En Advances and Applications in Computer Science, Electronics, and Industrial Engineering. CSEI 2021.. Springer, Cham. https://doi.org/10.1007/978-3-030-97719-1_13

Berrueta, A., Ursúa, A., Martín, I. S., Eftekhari, A. y Sanchis, P. (2019). Supercapacitors: Electrical Characteristics, Modeling, Applications, and Future Trends. IEEE Access, 50869-50896. https://10.1109/ACCESS.2019.2908558

Cama, Pinto, A., De la Hoz Franco, E. y Cama Pinto, D. (2012). Las redes de sensores inalámbricos y el internet de las cosas. INGE CUC, 8(1), 163-172.

Cansiz, M., Altinel, D. y Kurt, G.K. (2019). “Efficiency in RF energy harvesting systems: A comprehensive review”. Elsevier, 292-309. https://doi.org/10.1016/j.energy.2019.02.100

Chouhan, S., Nurmi, M., Halonen, K. (2016). Efficiency enhanced voltage multiplier circuit for RF energy harvesting. Microelectronics Journal, 95-102. https://doi.org/10.1016/j.mejo.2015.11.012

Dolgov, A., Zane, R. y Popovic, Z. (2010). Power Management System for Online Low Power RF Energy Harvesting Optimization. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(7), 1802-1811. http://dx.doi.org/10.1109/TCSI.2009.2034891

Eid, A., Costantino, J., Tak, Y., Ramadán, A., Abdalá, M., ElHajj, R., Awad, R. y Kasba del IB. (2017). An efficient RF energy harvesting system", European Conference on Antennas and Propagation (EUCAP), 896-899. https://10.23919/EuCAP.2017.7928573

Eid, A., Hester, J., Nauroze, A., Lin, T.H., Costantine, J., Tawk, Y., Ramadan, A. H. y Tentzeris, M. (2018). A Flexible Compact Rectenna for 2.40Hz ISM Energy Harvesting Applications. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1887-1888. https://10.1109/APUSNCURSINRSM.2018.8608525

Elahi, H., Munir, K., Eugeni, M., Atek, S. y Gaudenzi, P. (2020). Energy Harvesting towards Self-Powered IoT Devices. Energies. MDPI AG, 13(21), 5528. http://dx.doi.org/10.3390/en13215528

Garg, N., y Garg, R. (2017). Energy harvesting in IoT devices: A survey. 2017 International Conference on Intelligent Sustainable Systems (ICISS), 127-131. http://dx.doi.org/10.1109/ISS1.2017.8389371

Martinho, D. L. (2020). Caracterización experimental de una PMU (Power Management Unit) para aplicaciones de Energy Harvesting (EH) [Tesis de Ingeniería], Universidad Politécnica de Catalunya.

Gudan, K., Chemishkian, S., Hull, J., Thomas, S., Ensworth, J. y Reynolds, M. (2014). A 2.4GHz ambient RF energy harvesting system with −20dBm minimum input power and NiMH battery storage. 2014 IEEE RFID Technology and Applications Conference (RFID-TA), 7-12. https://10.1109/RFID-TA.2014.6934191.

Guerrero, C. A. (2016). Sistema de recolección de energía (Energy Harvesting), que emplea la corriente Corona y señales de alta frecuencia [Tesis de Maestría, Bogotá: Universidad Nacional de Colombia]. Repositorio institucional de la universidad Nacional de Colombia https://repositorio.unal.edu.co/handle/unal/59817

Haddad, P., Gosset, G., Raskin, J. y Flandre, D. (2014). Efficient ultra low power rectification at 13.56 MHz for a 10 µA load current. 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 1-2. https://10.1109/S3S.2014.7028220

Huang, J. y Chen, S. (2016). A compact slot loop rectenna for dual-band operation at 2.4- and 5.8-GHz bands. 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 411-412. https://10.1109/APS.2016.7695914

Hwang, Y., Lei, C., Yang, Y., Chen, J. y Yu, C. (2014). A 13.56 MHz Low-Voltage and Low-Control-Loss RF-DC Rectifier Utilizing Reducing Reverse Loss Technique. EEE Transactions on Power Electronics, 6544-6554. https://10.1109/TPEL.2014.2304517

Jabbar, H., Song, Y.S. y Jeong, T.T. (2010). RF energy harvesting system and circuits for charging of mobile devices. IEEE Transactions on Consumer Electronics, 247-253. https://10.1109/TCE.2010.5439152

Kaur, N., Sharma, N. y Kumar, N. (2018). RF Energy Harvesting and Storage System of Rectenna: A Review”. Indian Journal of Science and Technology, 11, 1-5. https://10.17485/ijst/2018/v11i25/114309

Kim, S., y Chou, P. (2015). “Energy harvesting: Energy harvesting with supercapacitor-based energy storage”, Smart Sensors and Systems, 215-241. https://10.1007/978-3-319-14711-6_10

Kim, S., Vyas, R., Bito, J., Niotaki, K., Collado, A., Georgiadis, A. y Tentzeris, M. (2014). Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms, Proceedings of the IEEE, 102(11): 1649-1666. http://dx.doi.org/10.1109/JPROC.2014.2357031

López, F., Torrealba, R. y Tamariz, E. I. (2015). Analysis and design of a reconfigurable antenna for ISM and GSM bands for cognitive radio applications. 2015 International Conference on Electronics, Communications and Computers (CONIELECOMP), 66-71. https://10.1109/CONIELECOMP.2015.7086927.

Lu, X., Wang, P., Niyato, D., Kim, D.I. y Han, Z. (2015). Wireless Networks With RF Energy Harvesting: A Contemporary Survey. IEEE Communications Surveys & Tutorials, 17(2), 757-789. http://dx.doi.org/10.1109/COMST.2014.2368999

Luo,Y., Pu, L., Wang, G. y Zhao, Y. (2019). RF Energy Harvesting Wireless Communications: RF Environment, Device Hardware and Practical Issues. MDPI, 1-28. https://doi.org/10.3390/s19133010

Mane R., Batule, B., Lomte, N. y Gundecha, A. (2020). RF Energy Harvesting using Efficient Power Management System. 2nd International Conference on Communication & Information Processing (ICCIP), 1-8.

Martinez, J., A. Medina, S., Bonilla, C.A., Villegas, J. M. y Aldaz, J. C. (2020). Radio Frequency Energy Harvesting System Making Use of 180° Hybrid Couplers and Multiple Antennas to Improve the DC Output Voltage, IEEE Latin America Transactions, 604-612. https://10.1109/TLA.2020.9082733

Mindan, B., y Hong, L. (2010). The Analysis of Impedance Matching Problem in RF Circuit Design. 2010 International Forum on Information Technology and Applications, 350-353. http://dx.doi.org/10.1109/IFITA.2010.55

Moghaddam, N.A., Maleki, A., Shirichian, M. Shirichian y Panah, N. S. Panah. (2017). RF energy harvesting system and circuits for charging of wireless devices using spectrum sensing. 4th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 431-436. http://dx.doi.org/10.1109/ICECS.2017.8292044

Nalini, M., Kumar, J.V., Kumar, R. M. y Vignesh, M. (2017). Energy harvesting and management from ambient RF radiation, 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), 1-3. https://10.1109/IGEHT.2017.8094073

Niotaki, K., Kim, S., Jeong, S., Collado, A., Georgiadis, A. y Tentzeris, M. (2013). A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna. IEEE Antennas and Wireless Propagation Letters, 1634-1637. https://10.1109/LAWP.2013.2294200

Núñez, A. B. (2018). Análisis de ventajas e inconvenientes de las baterías de flujo redox frente a las baterías de iones de litio en aplicaciones de generación, distribución y comercialización de energía eléctrica [Tesis de Maestría], Universidad de Oviedo.

Olgun, U., Chen, C. y Volakis, J. L. (2010). Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs, 2010 URSI International Symposium on Electromagnetic Theory, 329-331. https://10.1109/URSI-EMTS.2010.5637008

Ong, L., Karim, M. y Nasimuddin, N. (2014). “Overview of antennas for RF energy harvesting.”, 2014 IEEE-APS Topical Conference on Antennas and Propagation Wireless Communications, APWC 2014, 209-212. https://10.1109/APWC.2014.6905541

Pérez, E. C. (2016). Estudio de los supercondensadores y su viabilidad como sistema de almacenamiento energético en instalaciones fotovoltaicas [Tesis de Grado], Universidad de Sevilla.

Piñuela, M., Mitcheson, P. D. y Lucyszyn, S. (2013). "Ambient RF Energy Harvesting in Urban and Semi-Urban Environments. EEE Transactions on Microwave Theory and Techniques, 2715-2726. https://10.1109/TMTT.2013.2262687

Rajshekhar, B., Motani, M., Murthy, C. y Vaze, R. (2019). Energy Harvesting Communications with Batteries Having Full-Cycle Constraints”, 1-6. https://10.1109/ICC.2019.8761228

Ramesh, G.P., y Rajan, A. (2014). Microstrip antenna designs for RF energy harvesting. En International Conference on Communication and Signal Processing (pp. 1653-1657). https://10.1109/ICCSP.2014.6950129

Rodríguez, A., Cruz, F. y Ramos, R. Z. (2015). Design of 900 Mhz AC to DC Converter Using Native Cmos Device of TSMC 0.18 Micron Technology for RF Energy Harvest Applicatio. Universal Journal of Electrical and Electronic Engineering, 99-105. https://10.13189/ujeee.2015.030306

Sarı, F y Uzun, Y. (2019). A comparative study: Voltage multipliers for rf energy harvesting system, 61(1), 12-23. https://10.33769/aupse.469183

Scheeler, R., Korhummel, S. y Popovic, Z. (2014). A Dual-Frequency Ultralow-Power Efficient 0.5-g Rectenna. IEEE Microwave Magazine, 15(1), 109-114. https://10.1109/MMM.2013.2288836

Scorcioni, S., Larcher, L. y Bertacchini, A. (2012). Optimized CMOS RF-DC converters for remote wireless powering of RFID applications. 2012 IEEE International Conference on RFID (RFID), 47-53. https://10.1109/RFID.2012.6193055

Sharma, P., y Bhatti, T. S. (2010). A review on electrochemical double-layer capacitors. Energy Conversion and Management, 2901-2912. https://doi.org/10.1016/j.enconman.2010.06.031

Shinki, Y., Shibata, K., Mansour, M. y Kanaya, H. (2017). Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit. Sensors 17(8): 1763. https://doi.org/10.3390/s17081763

Sivagami, P., Pushpavalli, M., Abirami, P., Sindhuja, S. y Reddy, N. S. (2018). Implementation Of RF Energy Harvesting For Mobile Charging. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 1-4. https://10.1109/ICCIC.2018.8782427

Song, C., Huang, Y., Zhou, J., Zhang, J., Yuan, S. y Carter, P. (2015). A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting. IEEE Transactions on Antennas and Propagation, 3486-3495. https://10.1109/TAP.2015.2431719

Sun, H., Guo, Y., He, M. y Zhong, Z. (2012). Design of a High-Efficiency 2.45-GHz Rectenna for Low-Input-Power Energy Harvesting. IEEE Antennas and Wireless Propagation Letters, 929-932. https://10.1109/LAWP.2012.221223

Sun, H., Guo, Y., He, M. y Zhong, Z. (2013). A Dual-Band Rectenna Using Broadband Yagi Antenna Array for Ambient RF Power Harvestin. IEEE Antennas and Wireless Propagation Letters, 918-921. https://10.1109/LAWP.2013.2272873

Takhedmit, H., Cirio, L., Costa, F. y Picon, O. (2014). Transparent rectenna and rectenna array for RF energy harvesting at 2.45 GHz. The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2970-2972. http://dx.doi.org/10.1109/EuCAP.2014.6902451

Tobar, Y. (2021). Implementación de algoritmos y protocolos de ahorro energético en redes de sensores inalámbricos [Tesis de maestria]. Universidad Católica de Santiago de Guayaquil.

Tony, A., y Hiryanto, L. (2019). A review on energy harvesting and storage for rechargeable wireless sensor networks. IOP Conference Series: Materials Science and Engineering, 508(1), 651-654. http://doi.org/10.1088/1757-899X/508/1/012120

Torrealba, R., Santiesteban, V. C., Ambrosio, R., Gomez, L. y Flores, E. (2016). Sistema de cosechamiento de energía con radio frecuencia. SOMI XXXI, 1-6.

Wang, W., Chen, X. y Wong, H. (2015). Analysis and design of CMOS full-wave rectifying charge pump for RF energy harvesting applications. TENCON 2015-2015 IEEE Region 10 Conference, 1-4. https://10.1109/TENCON.2015.7372865

Yathavi, 0T., Maunasree, K., Meenakshi, G.B., Malika, M. V. y Santhoshini, M. (2021). RF Energy Harvesting for Low Power Applications. 2021 10th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON), 1-6. https://10.1109/IEMECON53809.2021.9689155

Zeng, M., Andrenko, A., Liu, X., Li, Z. y Tan, H. (2017). A Compact Fractal Loop Rectenna for RF Energy Harvesting. IEEE Antennas and Wireless Propagation Letters, 2424-2427. https://10.1109/LAWP.2017.2722460

Zeng, M., Andrenko, A., Liu, X., Tan, H. y Zhu, B. (2016). Design of fractal loop antenna with integrated ground plane for RF energy harvesting. EEE International Conference on Mathematical Methods in Electromagnetic Theory, 384-387. https://10.1109/MMET.2016.7543970

Zeng, Z., Shen, S., Wang, B., Estrada, J.J., Murch, R. y Sánchez, E. (2020). An Ultra-low-power Power Management Circuit with Output Bootstrapping and Reverse Leakage Reduction Function for RF Energy Harvesting. 2020 IEEE/MTT-S International Microwave Symposium (IMS), 1059-1062. http://dx.doi.org/10.1109/IMS30576.2020.9224098

Zhang, H., Wang, J. y Qian, L. (2020). Low Input Power Management Circuit for Ambient Energy Harvesting. 2020 IEEE MTT-S International Wireless Symposium (IWS), 1-3. https://10.1109/IWS49314.2020.9360051

Publicado

2023-01-03

Cómo citar

Cuji, J., Merino, D., Brito, G., & Gordón, C. (2023). Etapas óptimas de sistemas de captación y almacenamiento de energía de RF. Enfoque UTE, 14(1). https://doi.org/10.29019/enfoqueute.883

Número

Sección

Misceláneos