Control de Congestión Distribuido Basado en Función de Utilidad.
DOI:
https://doi.org/10.29019/enfoqueute.994Palabras clave:
Control de congestión, Función de Utilidad, Aplicaciones en Tiempo Real, Aplicaciones Elásticas, Optimización Distribuida, Algoritmo ProactivoResumen
El artículo presenta el Algoritmo de Función de Utilidad Distribuida (D-AFU) como una notable evolución en la gestión y optimización del tráfico de red en entornos distribuidos. Basado en el principio de función de utilidad, D-AFU ajusta dinámicamente la velocidad de datos en respuesta a las demandas cambiantes de la red, con un rendimiento óptimo y una mejor experiencia para el usuario. A diferencia del modelo centralizado, D-AFU emplea un mecanismo distribuido escalable y con mayor resistencia contra fallos y sobrecargas del sistema. Su eficiencia fue validada utilizando el simulador NS-3. Se utilizaron tres métricas principales: la tasa de asignación de transmisión, la utilidad por sesión y la equidad (cuantificada por el coeficiente de Gini). D-AFU mostró un rendimiento excepcional, especialmente vital para aplicaciones en tiempo real que exigen alta Calidad de Servicio (QoS) y baja latencia.
Descargas
Citas
Cisco, “Cisco Annual Internet Report (2018–2023),” 2020. [Online]. Available: https://www.cisco.com/c/dam/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.docx/jcr%3acontent/renditions/white-paper-c11-741490_0.png
J. F. Kurose and K. W. Ross, Computer Networking: A Top-down Approach. Pearson, 2017. [Online]. Available: https://books.google.com.ec/books?id=OljpOAAACAAJ
W. R. Stevens and G. R. Wright, TCP/IP Illustrated: The Protocols, ser. Addison-Wesley professional computing series. Addison-Wesley, 1994. [Online]. Available: https://books.google.com.ec/books?id=-btNds68w84C
R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities,” in Proceedings - 10th IEEE International Conference on High Performance Computing and Communications, HPCC 2008. IEEE, 2008, pp. 5–13.
P. Ludeña, “Fairness and Proactive Congestion Control in Multipath Networks,” Ph.D. dissertation, Universidad Politécnica de Madrid, 2021.
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 63–74, 2010. [Online]. Available: https://doi.org/10.1145/1851275.1851192
K. R. Fall and S. Floyd, “Simulation-Based Comparisons of Tahoe, Reno and SACK TCP,” Comput. Commun. Rev., vol. 26, pp. 5–21, 1996. [Online]. Available: https://api.semanticscholar.org/CorpusID:7459148
P. Ludeña-González, J. L. López-Presa, and F. D. Muñoz, “Upward Max-Min Fairness in Multipath High-Speed Networks,” IEEE Access, 2021.
N. Li, Z. Deng, Q. Zhu, and Q. Du, “AdaBoost-TCP: A Machine Learning-Based Congestion Control Method for Satellite Networks,” in 2019 IEEE 19th International Conference on Communication Technology (ICCT), 2019, pp. 1126–1129.
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004. [Online]. Available: https://books.google.com.ec/books?id=IUZdAAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
M. Bahnasy, H. Elbiaze, and B. Boughzala, “Zero-Queue Ethernet Congestion Control Protocol Based on Available Bandwidth Estimation,” Journal of Network and Computer Applications, vol. 105, pp. 1–20, 2018.
R. Adams, “Active Queue Management: A Survey,” IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.
S. Varma, Internet Congestion Control. Elsevier Science, 2015. [Online]. Available: https://books.google.com.ec/books?id=gbPoBgAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
S. Hu, W. Bai, B. Qiao, K. Chen, and K. Tan, “Augmenting Proactive Congestion Control with AEOLUs,” in ACM International Conference Proceeding Series, 2018, pp. 22–28.
T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2. Springer US, 2009.
D. Giannopoulos, N. Chrysos, E. Mageiropoulos, G. Vardas, L. Tzanakis, and M. Katevenis, “Accurate Congestion Control for RDMA Transfers,” 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS), pp. 1–8, 2018.
M. Bahnasy and H. Elbiaze, “Fair Congestion Control Protocol for Data Center Bridging,” IEEE Systems Journal, vol. 13, no. 4, pp. 4134–4145, 2019.
I. Cho, K. Jang, and D. Han, “Credit-Scheduled Delay-bounded Congestion Control for Datacenters,” in SIGCOMM 2017 - Proceedings of the 2017 Conference of the ACM Special Interest Group on Data Communication, 2017, pp. 239–252.
M. R. Kanagarathinam, S. Singh, I. Sandeep, A. Roy, and N. Saxena, “DTCP: Dynamic TCP Congestion Control Algorithm for Next Generation Mobile Networks,” in 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), 2018, pp. 1–6.
T. M. Mitchell, Machine Learning, ser. McGraw-Hill International Editions. McGraw-Hill, 1997.
Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002200009791504X
C. D. Maciel and C. M. Ritter, “TCP/IP Networking in Process Control Plants,” Computers & Industrial Engineering, vol. 35, no. 3, pp. 611–614, 1998. [Online]. Available: https://doi.org/10.1016/S0360-8352(98)00171-5
C. Caini and R. Firrincieli, “TCP Hybla: A TCP Enhancement for Heterogeneous Networks,” International Journal of Satellite Communications and Networking, vol. 22, no. 5, pp. 547–566, 2004.
A. Mozo, J. L. López-Presa, and A. Fernández Anta, “A distributed and Quiescent Max-Min Fair Algorithm for Network Congestion Control,” Expert Systems with Applications, vol. 91, pp. 492–512, 2018.
J. R. Carrión Torres, “Aplicabilidad de Funciones de Utilidad Para el Control de Congestión en Redes de Computadores,” Master’s thesis, Universidad Técnica Particular de Loja, Loja, 2020.
R. Al-Saadi, G. Armitage, J. But, and P. Branch, “A Survey of Delay-Based and Hybrid TCP Congestion Control Algorithms,” IEEE Communications Surveys and Tutorials, vol. 21, no. 4, pp. 3609–3638, 2019.
M. Welzl, Network Congestion Control: Managing Internet Traffic. J. Wiley, 2005.
J. Jin, W.-H. Wang, and M. Palaniswami, “Utility Max–Min Fair Resource Allocation for Communication Networks with Multipath Routing,” Computer Communications, vol. 32, no. 17, pp. 1802–1809, 2009. [Online]. Available: https://doi.org/10.1016/j.comcom.2009.06.014
L. Chen, B. Wang, X. Chen, X. Zhang, and D. Yang, Utility-Based Resource Allocation for Mixed Traffic in Wireless Networks. Institute of Electrical and Electronics Engineers, 2011.
S. Li, Y. Zhang, Y. Wang, and W. Sun, “Utility Optimization-Based Bandwidth Allocation for Elastic and Inelastic Services in Peer-to-Peer Networks,” International Journal of Applied Mathematics and Computer Science, vol. 29, no. 1, pp. 111–123, 2019.
Q. V. Pham and W. J. Hwang, “Network Utility Maximization-Based Congestion Control over Wireless Networks: A Survey and Potential Directives,” IEEE Communications Surveys and Tutorials, vol. 19, no. 2, pp. 1173–1200, 2017.
M. Chiang, “Distributed Network Control Through Sum Product Algorithm on Graphs,” in Global Telecommunications Conference, 2002. GLOBECOM ’02. IEEE, vol. 3, 2002, pp. 2395–2399 vol.3.
A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed. Prentice Hall, 2011.
C. Demichelis and P. Chimento. (2002) IP Packet Delay Variation Metric for IP Performance Metrics (IPPM). Network Working Group, RFC 3393.
C. Gini, Variabilità e mutabilità, 1912, vol. 5, no. 20.
M. O. Lorenz, “Methods of Measuring the Concentration of Wealth,” Publications of the American Statistical Association, vol. 9, no. 70, pp. 209–219, 1905.
G. F. Riley and T. R. Henderson, “The NS-3 Network Simulator.” in Modeling and Tools for Network Simulation, K. Wehrle, M. Günes, and J. Gross, Eds. Springer, 2010, pp. 15–34. [Online]. Available: http://dblp.uni-trier.de/db/books/collections/Wehrle2010.html#RileyH10
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 The Authors
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.