Heat transfer incremental on a jacketed coolers system through optimization of the water flowrates
DOI:
https://doi.org/10.29019/enfoqueute.v11n4.663Keywords:
Genetic Algorithms, energetic efficiency, heat exchangers, optimization, rational water usageAbstract
This research proposed an optimized water distribution scheme in order to increase the heat transfer on a hydrogen sulphide gas coolers system. The system is comprised by two jacketed shell and tube heat exchangers, installed in a series-parallel arrangement. Each equipment operates with three streams, hence two major thermal communications are present. The water flowrates optimization was performed through genetic algorithms, using a model based on the ɛ-NTU method for simulation of the heat exchangers. The heat transfer incremental was estimated within the range 3695 to
10514 W, while the gas temperature reduction at the system outlet was projected between 2,9 and 9,8 K. Calculated heat recovery varied from 3,90 to 22,16%, averaging 12,44%. Multivariate linear regression was implemented for determination of the functions that solves the studied problem from a technological point of view.
Downloads
References
Ahmetović, E.; Ibrić, N.; Kravanja, Z. y Grossmann, I. E. (2015). Water and Energy Integration: A Comprehensive Literature Review of Non-isothermal Water Networks Synthesis. Computers and Chemical Engineering 82, pp. 144-171. doi: 10.1016/j.compchemeng.2015.06.011
Alam, T. y Kim, M-H. (2018). A Comprehensive Review on Single Phase Heat Transfer Enhancement Techniques in Heat Exchangers Applications. Renewable and Sustainable energy Reviews 81, pp. 813-839. doi: 10.1016/j.rser.2017.08.060
Bhattacharya, P. K. y Burman, P. (2016). Theory and Methods of Statistics. Oxford, Reino Unido: Academic Press (imprint of Elsevier). doi: 10.1016/ B978-0-12-802440-9.00012-6
Biegler, L. T. (2014). Recent Advances in Chemical Process Optimization. En Chemie Ingenieur Technik 86(7), pp. 1-11. doi: 10.1002/ cite.201400033
Biyanto, T. R.; Tama, N. E.; Permatasari, I. et al. (2019). Optimization Heat Transfer Coefficient in Retrofit Heat Exchanger Network Using Pinch Analysis and Killer Whale Algorithm. AIP Conference Proceedings, 2088-020051. doi: 10.1063/1.5095303
Bütün, H.; Kantor, I.; Mian, A. y Maréchal, F. (2018). A Heat Load Method for Retrofitting Heat Exchanger Networks. 28th European Symposium on Computed Aided Process Engineering, Graz, Austria. Junio 10-13. doi: 10.1016/B978-0-444-64235-6.50244-8
Edmonds, W. A. y Kennedy, T. D. (2017). An Applied Guide to Reseacrh Designs: Quantitative, Qualitative, and Mixed Methods (2º. ed.), Los Angeles, Estados Unidos: SAGE Publications.
Gaddis, E. S. (1986). Shell and Tube Heat Exchangers with Segmental Baffles. En Schlünder, E. U. (ed.), Heat Exchangers Design Handbook. Londres, Reino Unido: Hemisphere Publishing.
Ghiwala, T. M. y Matawala, V. K. (2014). Sizing of Triple Concentric Pipe Heat Exchanger. International Journal of Engineering Development and Research 2(2), pp. 1683-1692.
Gnielinski, V. (1976). New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. International Chemical Engineering 16(2), pp. 359-368.
Gnielinski, V. (2015). Turbulent Heat Transfer in Annular Spaces – A New Comprehensive Correlation. Heat Transfer Engineering 36(9), pp. 787-789. doi: 10.1080/01457632.2015.962953
Guo, J.; Cui, X.; Huai, X.; Cheng, K. y Zhang, H. (2019). The Coordination Distribution Analysis on the Series Schemes of Heat Exchanger System. International Journal of Heat and Mass Transfer 129, pp. 37-46. doi: 10.1016/ j.ijheatmasstransfer.2018.09.068
Hausen, H. (1943). Darstellung des Wärmeuberganges in Rohren durch Verallgemeinerte Potenzbeziehungen. VDIZ 4, pp. 91.
Hausen, H. (1983). Heat Transfer in Counter Flow, Parallel Flow and Cross Flow. Boston, Estados Unidos: McGraw Hill.
Jiang, N.; Han, W.; Guo, F. et al. (2018). A Novel Heat Exchanger Network Retrofit Approach Based on Performance Reassessment. Energy Conversion and Management 177, pp. 477-492. doi: 10.1016/j.econman.2018.10.001
Klemeš, J. J.; Wang, Q-W.; Varbanov, P. S. et al. (2020). Heat Transfer Enhancement, Intensification and Optimisation in Heat Exchanger Network Retrofit and Operation. Renewable and Sustainable Energy Reviews 120, pp. 109644. doi: 10.1016/j.rser.2019.109644>
Kotiaho, V. W.; Lampinen, M. J. y Assad, E. H. (2015). Effect of Heat Exchanger Connection on Effectiveness. Journal of Robotics and Mechanical Engineering Research 1(1), pp. 11-17. https://bit.ly/2Z7YAsI
Kumar-Singh, S. (2015). Thermal Design Guidelines for Optimizing Shell-and-tube Heat Exchangers. Chemical Engineering 122(2), pp. 54-57. https://bit.ly/32Y4Sw7
Li, L. y Lu, Z. (2018). A New Method for Model Validation with Multivariate Output. Reliability Engineering & System Safety 169, pp. 579-592. doi: 10.1016/j.ress.2017.10.005
Lorenzo-Llanes, J.; Zumalacárregui-de-Cárdenas, L. y Mayo-Abad, O. (2016). Integración simultánea de agua y energía: logros y desafíos. Centro Azúcar 43(1), pp. 37-50. https://bit.ly/358pLr8
Moslemi, H. R. y Keshtkar, M. M. (2018). Sensitivity Analysis and Thermal Performance of Evacuated U-Tube Solar Collector Using Genetic Algorithm. International Journal of Heat and Technology 36(4), pp. 1193-1202. doi: 10.18280/ ijht.360406
Mukherjee, E. (2004). Practical Thermal Design of Shell-and-Tube Heat Exchangers. Nueva York, Estados Unidos: Begell House Inc.
Najarro, R.; López, R; Racines, R. U. y Puris, A. (2017). Un algoritmo genético híbrido para la optimización del Flow Shop Scheduling bajo restricciones de entornos reales. Enfoque UTE 8(5), pp. 14-25. doi: 10.29019/ enfoqueute.v8n5.176
Petukhov, B. S. (1970). “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties. En Hartnett, J. P. y Irvine, T. F. (eds.), Advances in Heat Transfer 6, pp. 503-564. Nueva York, Estados Unidos: Academic Press.
Reyes-Rodríguez, M. B. y Moya-Rodríguez, J. L. (2016). Design and Optimization of Shell and Tube Heat Exchangers, State of the Art. Journal of Engineering and Technology for Industrial Applications 2(6), pp. 4-27. doi: 10.5935/2447-0228.20160011
Sánchez-Escalona, A. A.; Góngora-Leyva, E.; Zalazar-Oliva, C. y Álvarez-Hernández, E. (2017). Análisis del intercambio de calor e incrustaciones en un sistema de enfriadores de ácido sulfhídrico. Minería & Geología 33(3), pp. 326-340. https://bit.ly/2Fa8ZNy
Sánchez-Escalona, A. A. y Góngora-Leyva, E. (2018). Artificial Neural Network Modeling of Hydrogen Sulphide Gas Coolers Ensuring Extrapolation Capability. Mathematical Modelling of Engineering Problems 5(4), pp. 348-356. doi: 10.18280/mmep.050411
Sánchez-Escalona, A. A. y Góngora-Leyva, E. (2019). Improvements to the Heat Transfer Process on a Hydrogen Sulphide Gas Coolers System. International Journal of Heat and Technology 37(1), pp. 249-256. doi: 10.18280/ ijht.370130
Sheikholeslami, M.; Gorji-Bandpy, M. y Ganji, D. D. (2015). Review of Heat Transfer Enhancements Methods: Focus on Passive Methods Using Swirl Flow Devices. Renewable and Sustainable Energy Reviews 49, pp. 444-469. doi: 10.1016/j.rser.2015.04.113
Sieder, E. N. y Tate, G. E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial and Engineering Chemistry 28(12), pp. 1429-1435.
Tamayo-Ávila, I.; Pazmiño-Bravo, L. G.; Valencia-Alvear, D. F.; Galván-Paredes, M. M. y Batista-Zaldívar, M. A. (2015). Implementación de prácticas de laboratorio con costo mínimo, Enfoque UTE 6(2), pp. 44-58. doi: 10.29019/ enfoqueute.v6n2.59
Taborek, J. (1983) Shell-and-tube Heat Exchangers: Single Phase Flow. En Schlünder, E. U. (ed.), Heat Exchanger Design Handbook. Nueva York, Estados Unidos: Hemisphere Publishing Corporation.
Toimil, D. y Gómez, A. (2017). Review of metaheuristics applied to heat exchanger network design. International Transactions in Operational Research 24, pp. 7-26. doi: 10.1111/itor.12296
Tuyen, V.; Hap, N. V. y Phu, N. M. (2020). Thermal-hydraulic Characteristics and Optimization of a Liquid-to-suction Triple-tube Heat Exchanger. Case Studies in Thermal Engineering 19, pp. 100635. doi: 10.1016.j.csite.2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Enfoque UTE
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.