Incremento de la termotransferencia en un sistema de enfriadores enchaquetados, optimizando los flujos de agua

Autores/as

DOI:

https://doi.org/10.29019/enfoqueute.v11n4.663

Palabras clave:

Algoritmos Genéticos, eficiencia energética, intercambiadores de calor, optimización, uso racional del agua

Resumen

En esta investigación se propuso un esquema optimizado de distribución de agua para incrementar la termotransferencia, en un sistema de enfriadores de sulfuro de hidrógeno. La instalación está compuesta por dos intercambiadores de calor de tubos y coraza enchaquetados, instalados en un arreglo serie-paralelo. Cada equipo opera con tres fluidos y posee dos vías principales de intercambio térmico. La optimización de los flujos de agua se realizó mediante algoritmos genéticos, utilizando un modelo con base en el método ɛ-NUT para la simulación de los intercambiadores de calor. Se estimó un incremento del calor transferido entre 3695 y 10514 W, así como una disminución de la temperatura del gas a la salida del sistema entre 2.9 y 9.8 K. La recuperación termoenergética calculada osciló entre 3.90 y 22.16 %, con 12.44 % como promedio. Mediante regresión lineal múltiple se determinaron las funciones para solución tecnológica del problema investigado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmetović, E.; Ibrić, N.; Kravanja, Z. y Grossmann, I. E. (2015). Water and Energy Integration: A Comprehensive Literature Review of Non-isothermal Water Networks Synthesis. Computers and Chemical Engineering 82, pp. 144-171. doi: 10.1016/j.compchemeng.2015.06.011

Alam, T. y Kim, M-H. (2018). A Comprehensive Review on Single Phase Heat Transfer Enhancement Techniques in Heat Exchangers Applications. Renewable and Sustainable energy Reviews 81, pp. 813-839. doi: 10.1016/j.rser.2017.08.060

Bhattacharya, P. K. y Burman, P. (2016). Theory and Methods of Statistics. Oxford, Reino Unido: Academic Press (imprint of Elsevier). doi: 10.1016/ B978-0-12-802440-9.00012-6

Biegler, L. T. (2014). Recent Advances in Chemical Process Optimization. En Chemie Ingenieur Technik 86(7), pp. 1-11. doi: 10.1002/ cite.201400033

Biyanto, T. R.; Tama, N. E.; Permatasari, I. et al. (2019). Optimization Heat Transfer Coefficient in Retrofit Heat Exchanger Network Using Pinch Analysis and Killer Whale Algorithm. AIP Conference Proceedings, 2088-020051. doi: 10.1063/1.5095303

Bütün, H.; Kantor, I.; Mian, A. y Maréchal, F. (2018). A Heat Load Method for Retrofitting Heat Exchanger Networks. 28th European Symposium on Computed Aided Process Engineering, Graz, Austria. Junio 10-13. doi: 10.1016/B978-0-444-64235-6.50244-8

Edmonds, W. A. y Kennedy, T. D. (2017). An Applied Guide to Reseacrh Designs: Quantitative, Qualitative, and Mixed Methods (2º. ed.), Los Angeles, Estados Unidos: SAGE Publications.

Gaddis, E. S. (1986). Shell and Tube Heat Exchangers with Segmental Baffles. En Schlünder, E. U. (ed.), Heat Exchangers Design Handbook. Londres, Reino Unido: Hemisphere Publishing.

Ghiwala, T. M. y Matawala, V. K. (2014). Sizing of Triple Concentric Pipe Heat Exchanger. International Journal of Engineering Development and Research 2(2), pp. 1683-1692.

Gnielinski, V. (1976). New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. International Chemical Engineering 16(2), pp. 359-368.

Gnielinski, V. (2015). Turbulent Heat Transfer in Annular Spaces – A New Comprehensive Correlation. Heat Transfer Engineering 36(9), pp. 787-789. doi: 10.1080/01457632.2015.962953

Guo, J.; Cui, X.; Huai, X.; Cheng, K. y Zhang, H. (2019). The Coordination Distribution Analysis on the Series Schemes of Heat Exchanger System. International Journal of Heat and Mass Transfer 129, pp. 37-46. doi: 10.1016/ j.ijheatmasstransfer.2018.09.068

Hausen, H. (1943). Darstellung des Wärmeuberganges in Rohren durch Verallgemeinerte Potenzbeziehungen. VDIZ 4, pp. 91.

Hausen, H. (1983). Heat Transfer in Counter Flow, Parallel Flow and Cross Flow. Boston, Estados Unidos: McGraw Hill.

Jiang, N.; Han, W.; Guo, F. et al. (2018). A Novel Heat Exchanger Network Retrofit Approach Based on Performance Reassessment. Energy Conversion and Management 177, pp. 477-492. doi: 10.1016/j.econman.2018.10.001

Klemeš, J. J.; Wang, Q-W.; Varbanov, P. S. et al. (2020). Heat Transfer Enhancement, Intensification and Optimisation in Heat Exchanger Network Retrofit and Operation. Renewable and Sustainable Energy Reviews 120, pp. 109644. doi: 10.1016/j.rser.2019.109644>

Kotiaho, V. W.; Lampinen, M. J. y Assad, E. H. (2015). Effect of Heat Exchanger Connection on Effectiveness. Journal of Robotics and Mechanical Engineering Research 1(1), pp. 11-17. https://bit.ly/2Z7YAsI

Kumar-Singh, S. (2015). Thermal Design Guidelines for Optimizing Shell-and-tube Heat Exchangers. Chemical Engineering 122(2), pp. 54-57. https://bit.ly/32Y4Sw7

Li, L. y Lu, Z. (2018). A New Method for Model Validation with Multivariate Output. Reliability Engineering & System Safety 169, pp. 579-592. doi: 10.1016/j.ress.2017.10.005

Lorenzo-Llanes, J.; Zumalacárregui-de-Cárdenas, L. y Mayo-Abad, O. (2016). Integración simultánea de agua y energía: logros y desafíos. Centro Azúcar 43(1), pp. 37-50. https://bit.ly/358pLr8

Moslemi, H. R. y Keshtkar, M. M. (2018). Sensitivity Analysis and Thermal Performance of Evacuated U-Tube Solar Collector Using Genetic Algorithm. International Journal of Heat and Technology 36(4), pp. 1193-1202. doi: 10.18280/ ijht.360406

Mukherjee, E. (2004). Practical Thermal Design of Shell-and-Tube Heat Exchangers. Nueva York, Estados Unidos: Begell House Inc.

Najarro, R.; López, R; Racines, R. U. y Puris, A. (2017). Un algoritmo genético híbrido para la optimización del Flow Shop Scheduling bajo restricciones de entornos reales. Enfoque UTE 8(5), pp. 14-25. doi: 10.29019/ enfoqueute.v8n5.176

Petukhov, B. S. (1970). “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties. En Hartnett, J. P. y Irvine, T. F. (eds.), Advances in Heat Transfer 6, pp. 503-564. Nueva York, Estados Unidos: Academic Press.

Reyes-Rodríguez, M. B. y Moya-Rodríguez, J. L. (2016). Design and Optimization of Shell and Tube Heat Exchangers, State of the Art. Journal of Engineering and Technology for Industrial Applications 2(6), pp. 4-27. doi: 10.5935/2447-0228.20160011

Sánchez-Escalona, A. A.; Góngora-Leyva, E.; Zalazar-Oliva, C. y Álvarez-Hernández, E. (2017). Análisis del intercambio de calor e incrustaciones en un sistema de enfriadores de ácido sulfhídrico. Minería & Geología 33(3), pp. 326-340. https://bit.ly/2Fa8ZNy

Sánchez-Escalona, A. A. y Góngora-Leyva, E. (2018). Artificial Neural Network Modeling of Hydrogen Sulphide Gas Coolers Ensuring Extrapolation Capability. Mathematical Modelling of Engineering Problems 5(4), pp. 348-356. doi: 10.18280/mmep.050411

Sánchez-Escalona, A. A. y Góngora-Leyva, E. (2019). Improvements to the Heat Transfer Process on a Hydrogen Sulphide Gas Coolers System. International Journal of Heat and Technology 37(1), pp. 249-256. doi: 10.18280/ ijht.370130

Sheikholeslami, M.; Gorji-Bandpy, M. y Ganji, D. D. (2015). Review of Heat Transfer Enhancements Methods: Focus on Passive Methods Using Swirl Flow Devices. Renewable and Sustainable Energy Reviews 49, pp. 444-469. doi: 10.1016/j.rser.2015.04.113

Sieder, E. N. y Tate, G. E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial and Engineering Chemistry 28(12), pp. 1429-1435.

Tamayo-Ávila, I.; Pazmiño-Bravo, L. G.; Valencia-Alvear, D. F.; Galván-Paredes, M. M. y Batista-Zaldívar, M. A. (2015). Implementación de prácticas de laboratorio con costo mínimo, Enfoque UTE 6(2), pp. 44-58. doi: 10.29019/ enfoqueute.v6n2.59

Taborek, J. (1983) Shell-and-tube Heat Exchangers: Single Phase Flow. En Schlünder, E. U. (ed.), Heat Exchanger Design Handbook. Nueva York, Estados Unidos: Hemisphere Publishing Corporation.

Toimil, D. y Gómez, A. (2017). Review of metaheuristics applied to heat exchanger network design. International Transactions in Operational Research 24, pp. 7-26. doi: 10.1111/itor.12296

Tuyen, V.; Hap, N. V. y Phu, N. M. (2020). Thermal-hydraulic Characteristics and Optimization of a Liquid-to-suction Triple-tube Heat Exchanger. Case Studies in Thermal Engineering 19, pp. 100635. doi: 10.1016.j.csite.2

Publicado

2020-10-01

Cómo citar

Sánchez-Escalona, A. A., Camaraza-Medina, Y., Retirado-Mediaceja, Y., & Góngora-Leyva, E. (2020). Incremento de la termotransferencia en un sistema de enfriadores enchaquetados, optimizando los flujos de agua. Enfoque UTE, 11(4), pp. 71 – 86. https://doi.org/10.29019/enfoqueute.v11n4.663

Número

Sección

Misceláneos