Usando SVG para desarrollar mapas web para personas con discapacidad visual

Autores/as

DOI:

https://doi.org/10.29019/enfoque.v10n2.467

Palabras clave:

accesibilidad, mapas web, datos geográficos.

Resumen

This paper addresses the problem of accessibility in geographical web maps. A person with disability cannot use, nowadays, a web map with the same functionality as other users do. This problem creates a huge gap in universal usability, since a wide range of people are left out. This contravenes clearly the principles of the Web, which was created to benefit everyone in any circumstances. In addition, this kind of map would be very useful for people with disabilities, but they cannot take advantage of them due to accessibility problems. In this paper, some of the latest technologies (e.g. PostGIS or SVG) are used in order to provide a geographical web map with accessible features. Since no standard way of doing so exists, our objective is to research, design and implement a system which consists on the essential components to provide accessibility. What we propose is one of the many possible solutions, with some advantages and limitations, for the problem of accessibility on geographical web maps. This proposed solution leads to a discussion about the obtained result and some comments on the current state of the technologies involved in web accessibility.

Metrics

Descargas

La descarga de datos todavía no está disponible.

Citas

Accessibility of Google Maps API. (2017, November 20). Retrieved from Google Issue Tracker: https://issuetracker.google.com/issues/69541792
Akasaka, R. (2018, March 15). Introducing “wheelchair accessible” routes in transit navigation. Retrieved from Google -The Keyword: https://www.blog.google/products/maps/introducing-wheelchair-accessible-routes-transit-navigation/
Brajnik, G. (2009). Validity and reliability of web accessibility guidelines. ACM SIGACCESS conference on Computers and accessibility (pp. 131-138). Pittsburgh: ACM. doi:https://doi.org/10.1145/1639642.1639666
Cabrera-Goyes, E., & Ordóñez-Camacho, D. (2018). Posicionamiento en espacios interiores con Android, Bluetooth y RSSI. Enfoque UTE, 9(1), 118-126. doi:https://doi.org/10.29019/enfoqueute.v9n1.238
Calle-Jiménez, T., & Luján-Mora, S. (2016). Accessible Online Indoor Maps for Blind and Visually Impaired Users. ACM SIGACCESS Conference on Computers and Accessibility (pp. 309-310). Reno: ACM. doi:https://doi.org/10.1145/2982142.2982201
Calle-Jiménez, T., Eguez-Sarzosa, A., & Luján-Mora, S. (2018). Design of an Architecture for Accessible Web Maps for Visually Impaired Users. Advances in Human Factors and Systems Interaction (pp. 221-232). Orlando: Springer, Cham. doi:https://doi.org/10.1007/978-3-319-94334-3
Connor, A. (2010, April 2). Perceived Affordances and Designing for Task Flow. Retrieved from Johhny Holland: http://johnnyholland.org/2010/04/perceived-affordances-and-designing-for-task-flow/
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Section 24.3: Dijkstra's algorithm. In Introduction to Algorithms (pp. 596-601). McGraw-Hill.
Donoso, M. T. (2018, March 22). El pavimento podotáctil y la accesibilidad, Numbers Magazine. Retrieved from Numbers Magazine: http://numbersmagazine.com/articulo.php?tit=el-pavimento-podotactil-y-la-accesibilidad
Ducasse, J., Brock, A., & Jouffrais, C. (2017). Accessible Interactive Maps for the Visually Impaired. Springer.
Ellis, K., & Kent, M. (2017). Introduction: Social Disability. En Disability and Social Media: Global Perspectives (3-4). Routledge.
Ferraz, R. (2017). Accessibility and Search Engine Optimization on Scalable Vector Graphics. IEEE International Conference on Soft Computing and Machine Intelligence, (94-98). Port Louis. doi:https://doi.org/10.1109/ISCMI.2017.8279605
Fisher, C. (2019, January 10). Creating Accessible SVGs. Retrieved from Deque: https://www.deque.com/blog/creating-accessible-svgs
Fundación Telefónica. (2018, October). Presentamos Mapcesible. ¡Haz visible lo accesible! Retrieved from Fundación Telefónica: https://espacio.fundaciontelefonica.com/evento/presentamos-mapcesible-haz-visible-lo-accesible/
Instituto Municipal de Desarrollo Económico y Empleo de Córdoba. (2013). Córdoba accesible. Retrieved from http://www.cordobaaccesible.org/index.html
International Organization for Standardization. (2014). Guide for addressing accessibility in standards.
Internet Engineering Task Force. (2016, August). The GeoJSON Format. Retrieved from Internet Engineering Task Force: https://tools.ietf.org/html/rfc7946
Lewis, V. (2018, January 12). Decoding The Colors of Blindness Canes. Retrieved from VERONIIIICA: https://veroniiiica.com/2018/01/12/decoding-the-colors-of-blindness-canes/
Logan, T. (2018, May 24). Accessible Maps on the Web. Retrieved from Equal Entry: https://equalentry.com/accessible-maps-on-the-web/
Luján-Mora, S. (2009). Dispositivos adaptados. Retrieved from Accesibilidad Web: http://accesibilidadweb.dlsi.ua.es/?menu=disp-adaptados
Migliorisi, H. (2016, August 28). Accessible SVGs. Retrieved from CSS-Tricks: https://css-tricks.com/accessible-svgs/
PowerMapper. (2018, May 20). WAI-ARIA Screen reader compatibility. Retrieved from PowerMapper: https://www.powermapper.com/tests/screen-readers/aria/
PUNTODIS. (2017). Map´s Voice: la información de recorridos y puntos de interés de los planos al alcance de todos. Retrieved from https://puntodis.com/featured_item/planos-mas-accesibles-con-maps-voice/
Tao, Y., Ding, L., Wang, S., & Ganz, A. (2017). PERCEPT Indoor Wayfinding for Blind and Visually Impaired Users: Navigation Instructions Algorithm and Validation Framework. International Conference on Information and Communication Technologies for Ageing Well and e-Health, (pp. 143-149). Porto. doi:https://doi.org/10.1109/10.5220/0006312001430149
Watson, L. (2014, August 4). Using the tabindex attribute. Retrieved from The Paciello Group: https://developer.paciellogroup.com/blog/2014/08/using-the-tabindex-attribute/
Watson, L. (2018, July 23). Accessible SVG flowcharts. Retrieved from Tink: https://tink.uk/accessible-svg-flowcharts/
WebAIM. (2016, January 28). Tabindex. Retrieved from Keyboard Accessibility: https://webaim.org/techniques/keyboard/tabindex
World Health Organization. (2001). International Classification of Functioning, Disability and Health. Geneva: World Health Organization.
World Wide Web Consortium. (2008, December 11). Web Content Accessibility Guidelines (WCAG) 2.0. Retrieved from World Wide Web Consortium: https://www.w3.org/TR/WCAG20/
World Wide Web Consortium. (2011, August 16). Scalable Vector Graphics (SVG) 1.1 (Second Edition). Retrieved from World Wide Web Consortium: https://www.w3.org/TR/SVG11/
World Wide Web Consortium. (2017, December 14). Accessible Rich Internet Applications (WAI-ARIA) 1.1. Retrieved from World Wide Web Consortium: https://www.w3.org/TR/wai-aria-1.1/
World Wide Web Consortium. (2018, June 5). Web Content Accessibility Guidelines (WCAG) 2.1. Retrieved from World Wide Web Consortium: https://www.w3.org/TR/WCAG21/
World Wide Web Consortium. (2018, October 1). Web Speech API. Retrieved from World Wide Web Consortium: https://w3c.github.io/speech-api/
Zeng, L., & Weber, G. (2003). Accessible Maps for the Visually Impaired. SVG Open 2003. Vancouver.

Publicado

2019-06-28

Cómo citar

Juan-Armero, S., & Luján-Mora, S. (2019). Usando SVG para desarrollar mapas web para personas con discapacidad visual. Enfoque UTE, 10(2), pp. 90 - 106. https://doi.org/10.29019/enfoque.v10n2.467

Número

Sección

Informática, TIC